# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import torch import numpy as np from torch.nn import functional as F def axis_angle_to_quaternion(axis_angle): """ Convert rotations given as axis/angle to quaternions. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: quaternions with real part first, as tensor of shape (..., 4). """ angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) half_angles = 0.5 * angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles]) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48) quaternions = torch.cat( [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1) return quaternions def quaternion_to_matrix(quaternions): """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def axis_angle_to_matrix(axis_angle): """ Convert rotations given as axis/angle to rotation matrices. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) def matrix_of_angles(cos, sin, inv=False, dim=2): assert dim in [2, 3] sin = -sin if inv else sin if dim == 2: row1 = torch.stack((cos, -sin), axis=-1) row2 = torch.stack((sin, cos), axis=-1) return torch.stack((row1, row2), axis=-2) elif dim == 3: row1 = torch.stack((cos, -sin, 0 * cos), axis=-1) row2 = torch.stack((sin, cos, 0 * cos), axis=-1) row3 = torch.stack((0 * sin, 0 * cos, 1 + 0 * cos), axis=-1) return torch.stack((row1, row2, row3), axis=-2) def matrot2axisangle(matrots): # This function is borrowed from https://github.com/davrempe/humor/utils/transforms.py # axisang N x 3 ''' :param matrots: N*num_joints*9 :return: N*num_joints*3 ''' import cv2 batch_size = matrots.shape[0] matrots = matrots.reshape([batch_size, -1, 9]) out_axisangle = [] for mIdx in range(matrots.shape[0]): cur_axisangle = [] for jIdx in range(matrots.shape[1]): a = cv2.Rodrigues(matrots[mIdx, jIdx:jIdx + 1, :].reshape(3, 3))[0].reshape( (1, 3)) cur_axisangle.append(a) out_axisangle.append(np.array(cur_axisangle).reshape([1, -1, 3])) return np.vstack(out_axisangle) def axisangle2matrots(axisangle): # This function is borrowed from https://github.com/davrempe/humor/utils/transforms.py # axisang N x 3 ''' :param axisangle: N*num_joints*3 :return: N*num_joints*9 ''' import cv2 batch_size = axisangle.shape[0] axisangle = axisangle.reshape([batch_size, -1, 3]) out_matrot = [] for mIdx in range(axisangle.shape[0]): cur_axisangle = [] for jIdx in range(axisangle.shape[1]): a = cv2.Rodrigues(axisangle[mIdx, jIdx:jIdx + 1, :].reshape(1, 3))[0] cur_axisangle.append(a) out_matrot.append(np.array(cur_axisangle).reshape([1, -1, 9])) return np.vstack(out_matrot) def batch_rodrigues(axisang): # This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37 # axisang N x 3 axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) angle = torch.unsqueeze(axisang_norm, -1) axisang_normalized = torch.div(axisang, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) rot_mat = quat2mat(quat) rot_mat = rot_mat.view(rot_mat.shape[0], 9) return rot_mat def quat2mat(quat): """ This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 Convert quaternion coefficients to rotation matrix. Args: quat: size = [batch_size, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] batch_size = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(batch_size, 3, 3) return rotMat def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to Rodrigues vector Args: rotation_matrix (Tensor): rotation matrix. Returns: Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 4) # Nx4x4 >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 """ if rotation_matrix.shape[1:] == (3, 3): rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device).reshape( 1, 3, 1).expand(rot_mat.shape[0], -1, -1) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(quaternion))) if not quaternion.shape[-1] == 4: raise ValueError( "Input must be a tensor of shape Nx4 or 4. Got {}".format( quaternion.shape)) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape)) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( "Input size must be a N x 3 x 4 tensor. Got {}".format( rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] ], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] ], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 ], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] ], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.): """ This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (25, 3) 3D joint locations joints: (25, 3) 2D joint locations and confidence Returns: (3,) camera translation vector """ num_joints = S.shape[0] # focal length f = np.array([focal_length, focal_length]) # optical center center = np.array([img_size / 2., img_size / 2.]) # transformations Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) XY = np.reshape(S[:, 0:2], -1) O = np.tile(center, num_joints) F = np.tile(f, num_joints) weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) # least squares Q = np.array([ F * np.tile(np.array([1, 0]), num_joints), F * np.tile(np.array([0, 1]), num_joints), O - np.reshape(joints_2d, -1) ]).T c = (np.reshape(joints_2d, -1) - O) * Z - F * XY # weighted least squares W = np.diagflat(weight2) Q = np.dot(W, Q) c = np.dot(W, c) # square matrix A = np.dot(Q.T, Q) b = np.dot(Q.T, c) # solution trans = np.linalg.solve(A, b) return trans def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): """ This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (B, 49, 3) 3D joint locations joints: (B, 49, 3) 2D joint locations and confidence Returns: (B, 3) camera translation vectors """ device = S.device # Use only joints 25:49 (GT joints) S = S[:, 25:, :].cpu().numpy() joints_2d = joints_2d[:, 25:, :].cpu().numpy() joints_conf = joints_2d[:, :, -1] joints_2d = joints_2d[:, :, :-1] trans = np.zeros((S.shape[0], 3), dtype=np.float6432) # Find the translation for each example in the batch for i in range(S.shape[0]): S_i = S[i] joints_i = joints_2d[i] conf_i = joints_conf[i] trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) return torch.from_numpy(trans).to(device) def rot6d_to_rotmat_spin(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) # inp = a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1 # denom = inp.pow(2).sum(dim=1).sqrt().unsqueeze(-1) + 1e-8 # b2 = inp / denom b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def rot6d_to_rotmat(x): x = x.view(-1, 3, 2) # Normalize the first vector b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6) dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True) # Compute the second vector by finding the orthogonal complement to it b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6) # Finish building the basis by taking the cross product b3 = torch.cross(b1, b2, dim=1) rot_mats = torch.stack([b1, b2, b3], dim=-1) return rot_mats import mGPT.utils.rotation_conversions as rotation_conversions def rot6d(x_rotations, pose_rep): time, njoints, feats = x_rotations.shape # Compute rotations (convert only masked sequences output) if pose_rep == "rotvec": rotations = rotation_conversions.axis_angle_to_matrix(x_rotations) elif pose_rep == "rotmat": rotations = x_rotations.view(njoints, 3, 3) elif pose_rep == "rotquat": rotations = rotation_conversions.quaternion_to_matrix(x_rotations) elif pose_rep == "rot6d": rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations) else: raise NotImplementedError("No geometry for this one.") rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations) return rotations_6d def rot6d_batch(x_rotations, pose_rep): nsamples, time, njoints, feats = x_rotations.shape # Compute rotations (convert only masked sequences output) if pose_rep == "rotvec": rotations = rotation_conversions.axis_angle_to_matrix(x_rotations) elif pose_rep == "rotmat": rotations = x_rotations.view(-1, njoints, 3, 3) elif pose_rep == "rotquat": rotations = rotation_conversions.quaternion_to_matrix(x_rotations) elif pose_rep == "rot6d": rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations) else: raise NotImplementedError("No geometry for this one.") rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations) return rotations_6d def rot6d_to_rotvec_batch(pose): # nsamples, time, njoints, feats = rot6d.shape bs, nfeats = pose.shape rot6d = pose.reshape(bs, 24, 6) rotations = rotation_conversions.rotation_6d_to_matrix(rot6d) rotvec = rotation_conversions.matrix_to_axis_angle(rotations) return rotvec.reshape(bs, 24 * 3)