import numpy as np SMPL_BODY_BONES = [-0.0018, -0.2233, 0.0282, 0.0695, -0.0914, -0.0068, -0.0677, -0.0905, -0.0043, -0.0025, 0.1090, -0.0267, 0.0343, -0.3752, -0.0045, -0.0383, -0.3826, -0.0089, 0.0055, 0.1352, 0.0011, -0.0136, -0.3980, -0.0437, 0.0158, -0.3984, -0.0423, 0.0015, 0.0529, 0.0254, 0.0264, -0.0558, 0.1193, -0.0254, -0.0481, 0.1233, -0.0028, 0.2139, -0.0429, 0.0788, 0.1217, -0.0341, -0.0818, 0.1188, -0.0386, 0.0052, 0.0650, 0.0513, 0.0910, 0.0305, -0.0089, -0.0960, 0.0326, -0.0091, 0.2596, -0.0128, -0.0275, -0.2537, -0.0133, -0.0214, 0.2492, 0.0090, -0.0012, -0.2553, 0.0078, -0.0056, 0.0840, -0.0082, -0.0149, -0.0846, -0.0061, -0.0103] class HybrIKJointsToRotmat: def __init__(self): self.naive_hybrik = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] self.num_nodes = 22 self.parents = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19] self.child = [-1, 4, 5, 6, 7, 8, 9, 10, 11, -1, -2, -2, 15, 16, 17, -2, 18, 19, 20, 21, -2, -2] self.bones = np.reshape(np.array(SMPL_BODY_BONES), [24, 3])[:self.num_nodes] def multi_child_rot(self, t, p, pose_global_parent): """ t: B x 3 x child_num p: B x 3 x child_num pose_global_parent: B x 3 x 3 """ m = np.matmul(t, np.transpose(np.matmul(np.linalg.inv(pose_global_parent), p), [0, 2, 1])) u, s, vt = np.linalg.svd(m) r = np.matmul(np.transpose(vt, [0, 2, 1]), np.transpose(u, [0, 2, 1])) err_det_mask = (np.linalg.det(r) < 0.0).reshape(-1, 1, 1) id_fix = np.reshape(np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]), [1, 3, 3]) r_fix = np.matmul(np.transpose(vt, [0, 2, 1]), np.matmul(id_fix, np.transpose(u, [0, 2, 1]))) r = r * (1.0 - err_det_mask) + r_fix * err_det_mask return r, np.matmul(pose_global_parent, r) def single_child_rot(self, t, p, pose_global_parent, twist=None): """ t: B x 3 x 1 p: B x 3 x 1 pose_global_parent: B x 3 x 3 twist: B x 2 if given, default to None """ p_rot = np.matmul(np.linalg.inv(pose_global_parent), p) cross = np.cross(t, p_rot, axisa=1, axisb=1, axisc=1) sina = np.linalg.norm(cross, axis=1, keepdims=True) / (np.linalg.norm(t, axis=1, keepdims=True) * np.linalg.norm(p_rot, axis=1, keepdims=True)) cross = cross / np.linalg.norm(cross, axis=1, keepdims=True) cosa = np.sum(t * p_rot, axis=1, keepdims=True) / (np.linalg.norm(t, axis=1, keepdims=True) * np.linalg.norm(p_rot, axis=1, keepdims=True)) sina = np.reshape(sina, [-1, 1, 1]) cosa = np.reshape(cosa, [-1, 1, 1]) skew_sym_t = np.stack([0.0 * cross[:, 0], -cross[:, 2], cross[:, 1], cross[:, 2], 0.0 * cross[:, 0], -cross[:, 0], -cross[:, 1], cross[:, 0], 0.0 * cross[:, 0]], 1) skew_sym_t = np.reshape(skew_sym_t, [-1, 3, 3]) dsw_rotmat = np.reshape(np.eye(3), [1, 3, 3] ) + sina * skew_sym_t + (1.0 - cosa) * np.matmul(skew_sym_t, skew_sym_t) if twist is not None: skew_sym_t = np.stack([0.0 * t[:, 0], -t[:, 2], t[:, 1], t[:, 2], 0.0 * t[:, 0], -t[:, 0], -t[:, 1], t[:, 0], 0.0 * t[:, 0]], 1) skew_sym_t = np.reshape(skew_sym_t, [-1, 3, 3]) sina = np.reshape(twist[:, 1], [-1, 1, 1]) cosa = np.reshape(twist[:, 0], [-1, 1, 1]) dtw_rotmat = np.reshape(np.eye(3), [1, 3, 3] ) + sina * skew_sym_t + (1.0 - cosa) * np.matmul(skew_sym_t, skew_sym_t) dsw_rotmat = np.matmul(dsw_rotmat, dtw_rotmat) return dsw_rotmat, np.matmul(pose_global_parent, dsw_rotmat) def __call__(self, joints, twist=None): """ joints: B x N x 3 twist: B x N x 2 if given, default to None """ expand_dim = False if len(joints.shape) == 2: expand_dim = True joints = np.expand_dims(joints, 0) if twist is not None: twist = np.expand_dims(twist, 0) assert (len(joints.shape) == 3) batch_size = np.shape(joints)[0] joints_rel = joints - joints[:, self.parents] joints_hybrik = 0.0 * joints_rel pose_global = np.zeros([batch_size, self.num_nodes, 3, 3]) pose = np.zeros([batch_size, self.num_nodes, 3, 3]) for i in range(self.num_nodes): if i == 0: joints_hybrik[:, 0] = joints[:, 0] else: joints_hybrik[:, i] = np.matmul(pose_global[:, self.parents[i]], np.reshape(self.bones[i], [1, 3, 1])).reshape(-1, 3) + \ joints_hybrik[:, self.parents[i]] if self.child[i] == -2: pose[:, i] = pose[:, i] + np.eye(3).reshape(1, 3, 3) pose_global[:, i] = pose_global[:, self.parents[i]] continue if i == 0: r, rg = self.multi_child_rot(np.transpose(self.bones[[1, 2, 3]].reshape(1, 3, 3), [0, 2, 1]), np.transpose(joints_rel[:, [1, 2, 3]], [0, 2, 1]), np.eye(3).reshape(1, 3, 3)) elif i == 9: r, rg = self.multi_child_rot(np.transpose(self.bones[[12, 13, 14]].reshape(1, 3, 3), [0, 2, 1]), np.transpose(joints_rel[:, [12, 13, 14]], [0, 2, 1]), pose_global[:, self.parents[9]]) else: p = joints_rel[:, self.child[i]] if self.naive_hybrik[i] == 0: p = joints[:, self.child[i]] - joints_hybrik[:, i] twi = None if twist is not None: twi = twist[:, i] r, rg = self.single_child_rot(self.bones[self.child[i]].reshape(1, 3, 1), p.reshape(-1, 3, 1), pose_global[:, self.parents[i]], twi) pose[:, i] = r pose_global[:, i] = rg if expand_dim: pose = pose[0] return pose if __name__ == "__main__": jts2rot_hybrik = HybrIKJointsToRotmat() joints = np.array(SMPL_BODY_BONES).reshape(1, 24, 3)[:, :22] parents = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19] for i in range(1, 22): joints[:, i] = joints[:, i] + joints[:, parents[i]] pose = jts2rot_hybrik(joints) print(pose)