# Based on EVA, BEIT, timm and DeiT code bases # https://github.com/baaivision/EVA # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import os import math import logging from functools import partial from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model from utils.misc import download_cached_file def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self): return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Local_MHRA(nn.Module): def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3): super().__init__() padding = pos_kernel_size // 2 re_d_model = int(d_model // dw_reduction) self.pos_embed = nn.Sequential( nn.BatchNorm3d(d_model), nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0), nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model), nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0), ) # init zero # print('Init zero for Conv in pos_emb') nn.init.constant_(self.pos_embed[3].weight, 0) nn.init.constant_(self.pos_embed[3].bias, 0) def forward(self, x): out = self.pos_embed(x) return out class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None, no_lmhra=False, double_lmhra=True, lmhra_reduction=2.0, ): super().__init__() self.no_lmhra = no_lmhra self.double_lmhra = double_lmhra if not no_lmhra: self.lmhra1 = Local_MHRA(dim, dw_reduction=lmhra_reduction) if double_lmhra: self.lmhra2 = Local_MHRA(dim, dw_reduction=lmhra_reduction) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None and init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None, T=8): # Local MHRA if not self.no_lmhra: # x: BT, HW+1, C tmp_x = x[:, 1:, :] BT, N, C = tmp_x.shape B = BT // T H = W = int(N ** 0.5) tmp_x = tmp_x.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous() tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x)) tmp_x = tmp_x.view(B, C, T, N).permute(0, 2, 3, 1).contiguous().view(BT, N, C) x = torch.cat([x[:, :1, :], tmp_x], dim=1) # MHSA if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) # Local MHRA if not self.no_lmhra and self.double_lmhra: tmp_x = x[:, 1:, :] tmp_x = tmp_x.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous() tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x)) tmp_x = tmp_x.view(B, C, T, N).permute(0, 2, 3, 1).contiguous().view(BT, N, C) x = torch.cat([x[:, :1, :], tmp_x], dim=1) # MLP if self.gamma_1 is None: x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, temporal_downsample=False): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches if temporal_downsample: self.proj = nn.Conv3d( in_chans, embed_dim, kernel_size=(3, patch_size[0], patch_size[1]), stride=(2, patch_size[0], patch_size[1]), padding=(1, 0, 0) ) else: self.proj = nn.Conv3d( in_chans, embed_dim, kernel_size=(1, patch_size[0], patch_size[1]), stride=(1, patch_size[0], patch_size[1]), padding=(0, 0, 0) ) def forward(self, x, **kwargs): B, C, T, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class Global_MHRA(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, mlp_factor=4.0, drop_path=0., dropout=0., ): super().__init__() print(f'Drop path rate: {drop_path}') self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.dpe = nn.Conv3d(d_model, d_model, kernel_size=3, stride=1, padding=1, bias=True, groups=d_model) nn.init.constant_(self.dpe.bias, 0.) self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", nn.GELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask # zero init nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x, y, T): # x: 1, B, C # y: BT, HW+1, C BT, N, C = y.shape B = BT // T H = W = int(N ** 0.5) y = y.view(B, T, N, C) _, tmp_feats = y[:, :, :1], y[:, :, 1:] tmp_feats = tmp_feats.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous() tmp_feats = self.dpe(tmp_feats.clone()).view(B, C, T, N - 1).permute(0, 2, 3, 1).contiguous() y[:, :, 1:] = y[:, :, 1:] + tmp_feats y = y.permute(1, 2, 0, 3).flatten(0, 1) # T(HW+1), B, C d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x, y, T): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y), T=T)) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001, use_checkpoint=False, temporal_downsample=True, no_lmhra=False, double_lmhra=True, lmhra_reduction=1.5, gmhra_layers=4, gmhra_drop_path_rate=0., gmhra_dropout=0.5, ): super().__init__() self.image_size = img_size self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models print(f"Temporal downsample: {temporal_downsample}") self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, temporal_downsample=temporal_downsample, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None self.use_checkpoint = use_checkpoint print(f'No L_MHRA: {no_lmhra}') print(f'Double L_MHRA: {double_lmhra}') dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, no_lmhra=no_lmhra, double_lmhra=double_lmhra, lmhra_reduction=lmhra_reduction, ) for i in range(depth)]) # global MHRA self.gmhra_layers = gmhra_layers self.gmhra_layer_idx = [(depth - 1 - idx) for idx in range(gmhra_layers)] print(f"GMHRA index: {self.gmhra_layer_idx}") print(f"GMHRA dropout: {gmhra_dropout}") if gmhra_layers > 0: self.gmhra_cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) gmhra_dpr = [x.item() for x in torch.linspace(0, gmhra_drop_path_rate, gmhra_layers)] self.gmhra = nn.ModuleList([ Global_MHRA( embed_dim, num_heads, mlp_factor=mlp_ratio, drop_path=gmhra_dpr[i], dropout=gmhra_dropout, ) for i in range(gmhra_layers) ]) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def forward_features(self, x): x = self.patch_embed(x) B, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C) cls_tokens = self.cls_token.expand(B * T, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) # the input of global MHRA should be (THW+1)xBx1 if self.gmhra_layers > 0: gmhra_cls_token = self.gmhra_cls_token.repeat(1, B, 1) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None j = -1 for idx, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, rel_pos_bias, T=T) else: x = blk(x, rel_pos_bias, T=T) if idx in self.gmhra_layer_idx: j += 1 tmp_x = x.clone() gmhra_cls_token = self.gmhra[j](gmhra_cls_token, tmp_x, T=T) z = torch.cat([x.view(B, -1, C), gmhra_cls_token.permute(1, 0, 2)], dim=1) return z def forward(self, x): x = self.forward_features(x) return x def interpolate_pos_embed(model, checkpoint_model): if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'].float() embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed def convert_weights_to_fp16(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() model.apply(_convert_weights_to_fp16) def inflate_weight(weight_2d, time_dim, center=True): print(f'Init center: {center}') if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict, strict=True): state_dict_3d = model.state_dict() for k in state_dict.keys(): if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: print(f'Ignore: {k}') continue print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) msg = model.load_state_dict(state_dict, strict=strict) return msg def create_eva_vit_g( img_size=224, drop_path_rate=0.4, use_checkpoint=False, precision="fp16", vit_model_path=None, # UniFormerV2 temporal_downsample=True, no_lmhra=False, double_lmhra=False, lmhra_reduction=2.0, gmhra_layers=8, gmhra_drop_path_rate=0., gmhra_dropout=0.5, ): model = VisionTransformer( img_size=img_size, patch_size=14, use_mean_pooling=False, embed_dim=1408, depth=39, num_heads=1408//88, mlp_ratio=4.3637, qkv_bias=True, drop_path_rate=drop_path_rate, norm_layer=partial(nn.LayerNorm, eps=1e-6), use_checkpoint=use_checkpoint, temporal_downsample=temporal_downsample, no_lmhra=no_lmhra, double_lmhra=double_lmhra, lmhra_reduction=lmhra_reduction, gmhra_layers=gmhra_layers, gmhra_drop_path_rate=gmhra_drop_path_rate, gmhra_dropout=gmhra_dropout, ) if vit_model_path is not None and os.path.isfile(vit_model_path): cached_file = download_cached_file( vit_model_path, check_hash=False, progress=True ) state_dict = torch.load(cached_file, map_location="cpu") print(f"Load ViT model from: {vit_model_path}") interpolate_pos_embed(model, state_dict) msg = load_state_dict(model, state_dict, strict=False) print(msg) if precision == "fp16": # model.to("cuda") convert_weights_to_fp16(model) return model if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 8 model = create_eva_vit_g( img_size=224, drop_path_rate=0.4, use_checkpoint=False, precision="fp16", vit_model_path=None, temporal_downsample=True, no_lmhra=False, double_lmhra=False, lmhra_reduction=2.0, gmhra_layers=12, gmhra_drop_path_rate=0., gmhra_dropout=0.5, ) video = torch.rand(1, 3, num_frames, 224, 224) flops = FlopCountAnalysis(model, video) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)