---
title: 'VideoChat: Chat-Centric Video Understanding'
emoji: π
colorFrom: green
colorTo: blue
sdk: gradio
python_version: 3.8.16
app_file: app.py
pinned: false
license: mit
---
# π¦ VideoChat [[paper](https://arxiv.org/abs/2305.06355)]
![images](assert/framework.png)
In this study, we initiate an exploration into video understanding by introducing VideoChat, an **end-to-end chat-centric video understanding system**. It integrates video foundation models and large language models via a learnable neural interface, excelling in **spatiotemporal reasoning, event localization, and causal relationship inference**. To instructively tune this system, we propose a **video-centric instruction dataset**, composed of thousands of videos matched with detailed descriptions and conversations. This dataset emphasizes **spatiotemporal reasoning and causal relationships**, providing a valuable asset for training chat-centric video understanding systems. Preliminary qualitative experiments reveal our systemβs potential across a broad spectrum of video applications and set the standard for future research.
# :fire: Updates
- **2023/05/11**: Release the π¦**VideoChat V1**, which can **handle both image and video understanding!**
- [Model](https://drive.google.com/file/d/1BqmWHWCZBPkhTNWDAq0IfGpbkKLz9C0V/view?usp=share_link) and [Data](https://github.com/OpenGVLab/InternVideo/blob/main/Data/instruction_data.md).
- π§βπ» *Online demo is Preparing*.
- π§βπ§ *Tuning scripts are cleaning*.
# :hourglass_flowing_sand: Schedule
- [x] Small-scale video instuction data and tuning
- [x] Instruction tuning on BLIP+UniFormerV2+Vicuna
- [ ] Large-scale and complex video instuction data
- [ ] Instruction tuning on strong video foundation model
- [ ] User-friendly interactions with longer videos
- [ ] ...
# :speech_balloon: Example
Comparison with ChatGPT, MiniGPT-4, LLaVA and mPLUG-Owl.
Our VideoChat can handle both image and video understanding well!
Image understanding
# :running: Usage
- Prepare the envirment.
```shell
pip install -r requirements.txt
```
- Download [BLIP2](https://huggingface.co/docs/transformers/main/model_doc/blip-2) model:
- ViT: `wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth`
- QFormer: `wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth`
- Change the `vit_model_path` and `q_former_model_path` in [config.json](./configs/config.json).
- Download [StabelVicuna](https://huggingface.co/CarperAI/stable-vicuna-13b-delta) model:
- LLAMA: Download it from the [original repo](https://github.com/facebookresearch/llama) or [hugging face](https://huggingface.co/decapoda-research/llama-13b-hf).
- If you download LLAMA from the original repo, please process it via the following command:
```shell
# convert_llama_weights_to_hf is copied from transformers
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights \
--model_size 7B --output_dir /output/path
```
- Download [StableVicuna-13b-deelta](https://huggingface.co/CarperAI/stable-vicuna-13b-delta) and process it:
```shell
# fastchat v0.1.10
python3 apply_delta.py \
--base /path/to/model_weights/llama-13b \
--target stable-vicuna-13b \
--delta CarperAI/stable-vicuna-13b-delta
```
- Change the `llama_model_path` in [config.json](./configs/config.json).
- Download [VideoChat](https://drive.google.com/file/d/1BqmWHWCZBPkhTNWDAq0IfGpbkKLz9C0V/view?usp=share_link) model:
- Change the `videochat_model_path` in [config.json](./configs/config.json).
- Running demo with Gradio:
```shell
python demo.py
```
- Another demo on Jupyter Notebook can found in [demo.ipynb](demo.ipynb)
# :page_facing_up: Citation
If you find this project useful in your research, please consider cite:
```BibTeX
@article{2023videochat,
title={VideoChat: Chat-Centric Video Understanding},
author={KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and Yu Qiao},
journal={arXiv preprint arXiv:2305.06355},
year={2023}
}
```
# :thumbsup: Acknowledgement
Thanks to the open source of the following projects:
[InternVideo](https://github.com/OpenGVLab/InternVideo), [UniFormerV2](https://github.com/OpenGVLab/UniFormerV2), [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA), [BLIP2](https://huggingface.co/docs/transformers/main/model_doc/blip-2), [StableLM](https://github.com/Stability-AI/StableLM).