import numpy as np import torch import torch.nn.functional as F class SSIM(torch.nn.Module): """SSIM. Modified from: https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py """ def __init__(self, window_size=11, size_average=True): super().__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.register_buffer('window', self._create_window(window_size, self.channel)) def forward(self, img1, img2): assert len(img1.shape) == 4 channel = img1.size()[1] if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = self._create_window(self.window_size, channel) # window = window.to(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return self._ssim(img1, img2, window, self.window_size, channel, self.size_average) def _gaussian(self, window_size, sigma): gauss = torch.Tensor([ np.exp(-(x - (window_size // 2)) ** 2 / float(2 * sigma ** 2)) for x in range(window_size) ]) return gauss / gauss.sum() def _create_window(self, window_size, channel): _1D_window = self._gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) return _2D_window.expand(channel, 1, window_size, window_size).contiguous() def _ssim(self, img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=(window_size // 2), groups=channel) mu2 = F.conv2d(img2, window, padding=(window_size // 2), groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d( img1 * img1, window, padding=(window_size // 2), groups=channel) - mu1_sq sigma2_sq = F.conv2d( img2 * img2, window, padding=(window_size // 2), groups=channel) - mu2_sq sigma12 = F.conv2d( img1 * img2, window, padding=(window_size // 2), groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / \ ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() return ssim_map.mean(1).mean(1).mean(1) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): return