from segment_anything.modeling import Sam # from segment_anything import SamPredictor as SamPredictorBase import numpy as np import torch from typing import Optional, Tuple from segment_anything.utils.transforms import ResizeLongestSide class SamPredictor: def __init__( self, sam_model: Sam, ) -> None: """ Uses SAM to calculate the image embedding for an image, and then allow repeated, efficient mask prediction given prompts. Arguments: sam_model (Sam): The model to use for mask prediction. """ super().__init__() self.model = sam_model self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) # self.reset_image() def set_image( self, image: np.ndarray, image_format: str = "RGB", ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Arguments: image (np.ndarray): The image for calculating masks. Expects an image in HWC uint8 format, with pixel values in [0, 255]. image_format (str): The color format of the image, in ['RGB', 'BGR']. """ assert image_format in [ "RGB", "BGR", ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." if image_format != self.model.image_format: image = image[..., ::-1] # Transform the image to the form expected by the model input_image = self.transform.apply_image(image) input_image_torch = torch.as_tensor(input_image, device=self.device) input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] return self.set_torch_image(input_image_torch, image.shape[:2]) @torch.no_grad() def set_torch_image( self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...], ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Expects the input image to be already transformed to the format expected by the model. Arguments: transformed_image (torch.Tensor): The input image, with shape 1x3xHxW, which has been transformed with ResizeLongestSide. original_image_size (tuple(int, int)): The size of the image before transformation, in (H, W) format. """ assert ( len(transformed_image.shape) == 4 and transformed_image.shape[1] == 3 and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." # self.reset_image() original_size = original_image_size input_size = tuple(transformed_image.shape[-2:]) input_image = self.model.preprocess(transformed_image) features = self.model.image_encoder(input_image) # self.is_image_set = True res = {'features': features, 'original_size': original_size, 'input_size': input_size} return res def predict( self, features, point_coords: Optional[np.ndarray] = None, point_labels: Optional[np.ndarray] = None, box: Optional[np.ndarray] = None, mask_input: Optional[np.ndarray] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Predict masks for the given input prompts, using the currently set image. Arguments: point_coords (np.ndarray or None): A Nx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (np.ndarray or None): A length N array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. box (np.ndarray or None): A length 4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form 1xHxW, where for SAM, H=W=256. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (np.ndarray): The output masks in CxHxW format, where C is the number of masks, and (H, W) is the original image size. (np.ndarray): An array of length C containing the model's predictions for the quality of each mask. (np.ndarray): An array of shape CxHxW, where C is the number of masks and H=W=256. These low resolution logits can be passed to a subsequent iteration as mask input. """ if features.get('features', None) is None: raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") # Transform input prompts coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None if point_coords is not None: assert ( point_labels is not None ), "point_labels must be supplied if point_coords is supplied." point_coords = self.transform.apply_coords(point_coords, features['original_size']) coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] if box is not None: box = self.transform.apply_boxes(box, features['original_size']) box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) box_torch = box_torch[None, :] if mask_input is not None: mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) mask_input_torch = mask_input_torch[None, :, :, :] masks, iou_predictions, low_res_masks = self.predict_torch( features, coords_torch, labels_torch, box_torch, mask_input_torch, multimask_output, return_logits=return_logits, ) masks_np = masks[0].detach().cpu().numpy() iou_predictions_np = iou_predictions[0].detach().cpu().numpy() low_res_masks_np = low_res_masks[0].detach().cpu().numpy() return masks_np, iou_predictions_np, low_res_masks_np @torch.no_grad() def predict_torch( self, features, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor] = None, mask_input: Optional[torch.Tensor] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Predict masks for the given input prompts, using the currently set image. Input prompts are batched torch tensors and are expected to already be transformed to the input frame using ResizeLongestSide. Arguments: point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (torch.Tensor or None): A BxN array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. boxes (np.ndarray or None): A Bx4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form Bx1xHxW, where for SAM, H=W=256. Masks returned by a previous iteration of the predict method do not need further transformation. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (torch.Tensor): The output masks in BxCxHxW format, where C is the number of masks, and (H, W) is the original image size. (torch.Tensor): An array of shape BxC containing the model's predictions for the quality of each mask. (torch.Tensor): An array of shape BxCxHxW, where C is the number of masks and H=W=256. These low res logits can be passed to a subsequent iteration as mask input. """ if features.get('features', None) is None: raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") if point_coords is not None: points = (point_coords, point_labels) else: points = None # Embed prompts sparse_embeddings, dense_embeddings = self.model.prompt_encoder( points=points, boxes=boxes, masks=mask_input, ) # Predict masks low_res_masks, iou_predictions = self.model.mask_decoder( image_embeddings=features['features'], image_pe=self.model.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) # Upscale the masks to the original image resolution masks = self.model.postprocess_masks(low_res_masks, features['input_size'], features['original_size']) if not return_logits: masks = masks > self.model.mask_threshold return masks, iou_predictions, low_res_masks def get_image_embedding(self, image) -> torch.Tensor: return self.set_image(image) @property def device(self) -> torch.device: return self.model.device # def reset_image(self) -> None: # """Resets the currently set image.""" # self.is_image_set = False # self.features = None # self.orig_h = None # self.orig_w = None # self.input_h = None # self.input_w = None