import torch import torch.nn as nn import torchvision.models as models class PerceptualLoss(nn.Module): r""" Perceptual loss, VGG-based https://arxiv.org/abs/1603.08155 https://github.com/dxyang/StyleTransfer/blob/master/utils.py """ def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]): super(PerceptualLoss, self).__init__() self.add_module('vgg', VGG19()) self.criterion = torch.nn.L1Loss() self.weights = weights def __call__(self, x, y): # Compute features x_vgg, y_vgg = self.vgg(x), self.vgg(y) content_loss = 0.0 content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1']) content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1']) content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1']) content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1']) content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) return content_loss class VGG19(torch.nn.Module): def __init__(self): super(VGG19, self).__init__() features = models.vgg19(pretrained=True).features self.relu1_1 = torch.nn.Sequential() self.relu1_2 = torch.nn.Sequential() self.relu2_1 = torch.nn.Sequential() self.relu2_2 = torch.nn.Sequential() self.relu3_1 = torch.nn.Sequential() self.relu3_2 = torch.nn.Sequential() self.relu3_3 = torch.nn.Sequential() self.relu3_4 = torch.nn.Sequential() self.relu4_1 = torch.nn.Sequential() self.relu4_2 = torch.nn.Sequential() self.relu4_3 = torch.nn.Sequential() self.relu4_4 = torch.nn.Sequential() self.relu5_1 = torch.nn.Sequential() self.relu5_2 = torch.nn.Sequential() self.relu5_3 = torch.nn.Sequential() self.relu5_4 = torch.nn.Sequential() for x in range(2): self.relu1_1.add_module(str(x), features[x]) for x in range(2, 4): self.relu1_2.add_module(str(x), features[x]) for x in range(4, 7): self.relu2_1.add_module(str(x), features[x]) for x in range(7, 9): self.relu2_2.add_module(str(x), features[x]) for x in range(9, 12): self.relu3_1.add_module(str(x), features[x]) for x in range(12, 14): self.relu3_2.add_module(str(x), features[x]) for x in range(14, 16): self.relu3_2.add_module(str(x), features[x]) for x in range(16, 18): self.relu3_4.add_module(str(x), features[x]) for x in range(18, 21): self.relu4_1.add_module(str(x), features[x]) for x in range(21, 23): self.relu4_2.add_module(str(x), features[x]) for x in range(23, 25): self.relu4_3.add_module(str(x), features[x]) for x in range(25, 27): self.relu4_4.add_module(str(x), features[x]) for x in range(27, 30): self.relu5_1.add_module(str(x), features[x]) for x in range(30, 32): self.relu5_2.add_module(str(x), features[x]) for x in range(32, 34): self.relu5_3.add_module(str(x), features[x]) for x in range(34, 36): self.relu5_4.add_module(str(x), features[x]) # don't need the gradients, just want the features for param in self.parameters(): param.requires_grad = False def forward(self, x): relu1_1 = self.relu1_1(x) relu1_2 = self.relu1_2(relu1_1) relu2_1 = self.relu2_1(relu1_2) relu2_2 = self.relu2_2(relu2_1) relu3_1 = self.relu3_1(relu2_2) relu3_2 = self.relu3_2(relu3_1) relu3_3 = self.relu3_3(relu3_2) relu3_4 = self.relu3_4(relu3_3) relu4_1 = self.relu4_1(relu3_4) relu4_2 = self.relu4_2(relu4_1) relu4_3 = self.relu4_3(relu4_2) relu4_4 = self.relu4_4(relu4_3) relu5_1 = self.relu5_1(relu4_4) relu5_2 = self.relu5_2(relu5_1) relu5_3 = self.relu5_3(relu5_2) relu5_4 = self.relu5_4(relu5_3) out = { 'relu1_1': relu1_1, 'relu1_2': relu1_2, 'relu2_1': relu2_1, 'relu2_2': relu2_2, 'relu3_1': relu3_1, 'relu3_2': relu3_2, 'relu3_3': relu3_3, 'relu3_4': relu3_4, 'relu4_1': relu4_1, 'relu4_2': relu4_2, 'relu4_3': relu4_3, 'relu4_4': relu4_4, 'relu5_1': relu5_1, 'relu5_2': relu5_2, 'relu5_3': relu5_3, 'relu5_4': relu5_4, } return out