import cv2 import gradio as gr import numpy as np import matplotlib.pyplot as plt # input_video = './sample/car.mp4' # video Inference def vid_inf(vid_path, contour_thresh): # Create a VideoCapture object cap = cv2.VideoCapture(vid_path) # get the video frames' width and height for proper saving of videos frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) fps = int(cap.get(cv2.CAP_PROP_FPS)) frame_size = (frame_width, frame_height) fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_video = "output_recorded.mp4" # create the `VideoWriter()` object out = cv2.VideoWriter(output_video, fourcc, fps, frame_size) # Create Background Subtractor MOG2 object backSub = cv2.createBackgroundSubtractorMOG2(history=200, varThreshold=25, detectShadows=True) # print(dir(backSub)) # Check if camera opened successfully if not cap.isOpened(): print("Error opening video file") count = 0 # Read until video is completed while cap.isOpened(): # Capture frame-by-frame ret, frame = cap.read() # print(frame.shape) if ret: # Apply background subtraction fg_mask = backSub.apply(frame) # print(fg_mask.shape) # fg_mask = cv2.resize(fg_mask, (640,480)) # print(fg_mask.shape) # cv2.imshow('Frame_bg', fg_mask) # apply global threshol to remove shadows retval, mask_thresh = cv2.threshold( fg_mask, 200, 255, cv2.THRESH_BINARY) # cv2.imshow('frame_thresh', mask_thresh) # set the kernal kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) # Apply erosion mask_eroded = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel) # mask_eroded = cv2.resize(mask_eroded, (640,480)) # cv2.imshow('frame_erode', mask_eroded) # Find contours contours, hierarchy = cv2.findContours( mask_eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # print(contours) min_contour_area = contour_thresh # Define your minimum area threshold large_contours = [ cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area] # frame_ct = cv2.drawContours(frame, large_contours, -1, (0, 255, 0), 2) frame_out = frame.copy() for cnt in large_contours: # print(cnt.shape) x, y, w, h = cv2.boundingRect(cnt) frame_out = cv2.rectangle(frame_out, (x, y), (x+w, y+h), (0, 0, 200), 3) frame_out_final = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB) vid = out.write(frame_out) # Display the resulting frame # resized_frame = cv2.resize(frame_out, (640,480)) # cv2.imshow('Frame_final', frame_out) # update the count every frame and display every 12th frame if not count % 12: yield frame_out_final, None count += 1 # Press Q on keyboard to exit if cv2.waitKey(25) & 0xFF == ord('q'): break else: break # When everything done, release the video capture and writer object cap.release() out.release() # Closes all the frames cv2.destroyAllWindows() yield None, output_video # vid_inf(input_video) # gradio interface input_video = gr.Video(label="Input Video") contour_thresh = gr.Slider(0, 10000, value=4, label="Contour Threshold", info="Adjust the Countour Threshold according to the object size that you want to detect.") output_frames = gr.Image(label="Output Frames") output_video_file = gr.Video(label="Output video") app = gr.Interface( fn=vid_inf, inputs=[input_video, contour_thresh], outputs=[output_frames, output_video_file], title=f"Motion Detection using OpenCV", description=f'A gradio app for dynamic video analysis tool that leverages advanced background subtraction and contour detection techniques to identify and track moving objects in real-time.', allow_flagging="never", examples=[["./sample/car.mp4"], ["./sample/motion_test.mp4"], ["./sample/home.mp4"]], ) app.queue().launch()