import cv2 import numpy as np import gradio as gr # Define Utility Functions From Straight Lane Image. def draw_lines(img, lines, color=[255, 0, 0], thickness=2): """Utility for drawing lines.""" if lines is not None: for line in lines: for x1, y1, x2, y2 in line: cv2.line(img, (x1, y1), (x2, y2), color, thickness) def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): """Utility for defining Line Segments.""" lines = cv2.HoughLinesP( img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap ) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines(line_img, lines) return line_img, lines def separate_left_right_lines(lines): """Separate left and right lines depending on the slope.""" left_lines = [] right_lines = [] if lines is not None: for line in lines: for x1, y1, x2, y2 in line: if x1 == x2: continue # Avoid division by zero slope = (y2 - y1) / (x2 - x1) if slope < 0: # Negative slope = left lane. left_lines.append([x1, y1, x2, y2]) elif slope > 0: # Positive slope = right lane. right_lines.append([x1, y1, x2, y2]) return left_lines, right_lines def cal_avg(values): """Calculate average value.""" if values is not None: if len(values) > 0: n = len(values) else: n = 1 return sum(values) / n def extrapolate_lines(lines, upper_border, lower_border): """Extrapolate lines keeping in mind the lower and upper border intersections.""" slopes = [] consts = [] if lines: for x1, y1, x2, y2 in lines: if x1 == x2: continue # Avoid division by zero slope = (y2 - y1) / (x2 - x1) slopes.append(slope) c = y1 - slope * x1 consts.append(c) avg_slope = cal_avg(slopes) avg_consts = cal_avg(consts) if avg_slope == 0: return None # Calculate average intersection at lower_border. x_lane_lower_point = int((lower_border - avg_consts) / avg_slope) # Calculate average intersection at upper_border. x_lane_upper_point = int((upper_border - avg_consts) / avg_slope) return [x_lane_lower_point, lower_border, x_lane_upper_point, upper_border] else: return None def draw_con(img, lines): """Fill in lane area.""" points = [] if lines is not None: for x1, y1, x2, y2 in lines[0]: points.append([x1, y1]) points.append([x2, y2]) for x1, y1, x2, y2 in lines[1]: points.append([x2, y2]) points.append([x1, y1]) if points: points = np.array([points], dtype="int32") cv2.fillPoly(img, points, (0, 255, 0)) def extrapolated_lane_image(img, lines, roi_upper_border, roi_lower_border): """Main function called to get the final lane lines.""" lanes_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) # Extract each lane. lines_left, lines_right = separate_left_right_lines(lines) lane_left = extrapolate_lines(lines_left, roi_upper_border, roi_lower_border) lane_right = extrapolate_lines(lines_right, roi_upper_border, roi_lower_border) if lane_left is not None and lane_right is not None: draw_con(lanes_img, [[lane_left], [lane_right]]) return lanes_img def process_image(image, points): # process the image gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) gray_select = cv2.inRange(gray, 150, 255) # Create mask roi_mask = np.zeros_like(gray_select) points_array = np.array([points], dtype=np.int32) # print('=========') # print(points_array) # Defining a 3 channel or 1 channel color to fill the mask. if len(gray_select.shape) > 2: channel_count = gray_select.shape[2] # 3 or 4 depending on your image. ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 cv2.fillPoly(roi_mask, points_array, ignore_mask_color) # cv2.imwrite('mask.png', roi_mask) roi_mask = cv2.bitwise_and(gray_select, roi_mask) # cv2.imwrite('invmask.png', roi_mask) # Canny Edge Detection. low_threshold = 50 high_threshold = 100 img_canny = cv2.Canny(roi_mask, low_threshold, high_threshold) # Remove noise using Gaussian blur. kernel_size = 3 canny_blur = cv2.GaussianBlur(img_canny, (kernel_size, kernel_size), 0) # Hough transform parameters set according to the input image. rho = 1 theta = np.pi / 180 threshold = 100 min_line_len = 50 max_line_gap = 300 hough, lines = hough_lines(canny_blur, rho, theta, threshold, min_line_len, max_line_gap) # Extrapolate lanes. ys, xs = np.where(roi_mask > 0) if len(ys) == 0: # No ROI mask, return original image. return image roi_upper_border = np.min(ys) roi_lower_border = np.max(ys) lane_img = extrapolated_lane_image(image, lines, roi_upper_border, roi_lower_border) # Combine using weighted image. image_result = cv2.addWeighted(image, 1, lane_img, 0.4, 0.0) # cv2.imshow('result', image_result) return image_result def extract_first_frame_interface(video_file): # Read the video file. cap = cv2.VideoCapture(video_file) if not cap.isOpened(): print("Error opening video stream or file") return None, None # Read the first frame. ret, frame = cap.read() cap.release() if not ret: print("Cannot read the first frame") return None, None # Convert the frame to RGB (since OpenCV uses BGR). frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Return the frame for display and as the original frame. return frame_rgb, frame_rgb # Return frame twice, once for display, once for state def get_point_interface(original_frame, points, evt: gr.SelectData): x, y = evt.index # Ensure points is a list if points is None: points = [] points = points.copy() # Make a copy to avoid modifying in-place points.append((x, y)) # Draw the point and lines on the image image = original_frame.copy() # Draw the points for pt in points: cv2.circle(image, pt, 5, (255, 0, 0), -1) # Draw the lines if len(points) > 1: for i in range(len(points) - 1): cv2.line(image, points[i], points[i + 1], (255, 0, 0), 2) # Optionally, draw line from last to first to close the polygon # cv2.line(image, points[-1], points[0], (255, 0, 0), 2) # Return the updated image and points # print("selected points") # print(points) return image, points def process_video_interface(video_file, points): # print("=-------------------------------") # print(points) points = list(points) # Ensure points is a list of tuples if points is None or len(points) < 3: print("Not enough points to define a polygon") return None # Create the ROI mask # Read the first frame to get the image size cap = cv2.VideoCapture(video_file) if not cap.isOpened(): print("Error opening video stream or file") return None frame_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_fps = int(cap.get(cv2.CAP_PROP_FPS)) fourcc = cv2.VideoWriter_fourcc(*"mp4v") # For mp4 output. output_filename = "processed_output.mp4" out = cv2.VideoWriter(output_filename, fourcc, frame_fps, (frame_w, frame_h)) while True: ret, frame = cap.read() if not ret: break # Process the frame using roi_mask result = process_image(frame, points) out.write(result) cap.release() out.release() return output_filename # Gradio Interface. with gr.Blocks() as demo: with gr.Row(equal_height=True): video_input = gr.Video(label="Input Video") extract_frame_button = gr.Button("Extract First Frame") with gr.Row(equal_height=True): first_frame_image = gr.Image(label="Click to select ROI points") original_frame_state = gr.State(None) points_state = gr.State([]) with gr.Row(equal_height=True): process_button = gr.Button("Process Video") clear_points_button = gr.Button("Clear Points") output_video = gr.Video(label="Processed Video") # Extract the first frame and store it extract_frame_button.click( fn=extract_first_frame_interface, inputs=video_input, outputs=[first_frame_image, original_frame_state] ) # Handle point selection on the image first_frame_image.select( fn=get_point_interface, inputs=[original_frame_state, points_state], outputs=[first_frame_image, points_state] ) # Clear the selected points clear_points_button.click( fn=lambda original_frame: (original_frame, []), inputs=original_frame_state, outputs=[first_frame_image, points_state], ) # Process the video using the selected ROI process_button.click(fn=process_video_interface, inputs=[video_input, points_state], outputs=output_video) # Adding examples gr.Examples( examples=[ "./lane.mp4" ], inputs=video_input ) demo.launch()