Spaces:
Running
Running
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import moviepy.editor as mp | |
from pydub import AudioSegment | |
from PIL import Image | |
import numpy as np | |
import os | |
import tempfile | |
import uuid | |
import time | |
import threading | |
from concurrent.futures import ThreadPoolExecutor | |
torch.set_float32_matmul_precision("medium") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load both BiRefNet models | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True) | |
birefnet.to(device) | |
birefnet_lite = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True) | |
birefnet_lite.to(device) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
# Function to process a single frame | |
def process_frame(frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color): | |
try: | |
pil_image = Image.fromarray(frame) | |
if bg_type == "Color": | |
processed_image = process(pil_image, color, fast_mode) | |
elif bg_type == "Image": | |
processed_image = process(pil_image, bg, fast_mode) | |
elif bg_type == "Video": | |
background_frame = background_frames[bg_frame_index % len(background_frames)] | |
bg_frame_index += 1 | |
background_image = Image.fromarray(background_frame) | |
processed_image = process(pil_image, background_image, fast_mode) | |
else: | |
processed_image = pil_image # Default to original image if no background is selected | |
return np.array(processed_image), bg_frame_index | |
except Exception as e: | |
print(f"Error processing frame: {e}") | |
return frame, bg_frame_index | |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True, max_workers=6): | |
try: | |
start_time = time.time() # Start the timer | |
# Load the video using moviepy | |
video = mp.VideoFileClip(vid) | |
# Load original fps if fps value is equal to 0 | |
if fps == 0: | |
fps = video.fps | |
# Extract audio from the video | |
audio = video.audio | |
# Extract frames at the specified FPS | |
frames = list(video.iter_frames(fps=fps)) | |
# Process each frame for background removal | |
processed_frames = [] | |
yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds" | |
if bg_type == "Video": | |
background_video = mp.VideoFileClip(bg_video) | |
if background_video.duration < video.duration: | |
if video_handling == "slow_down": | |
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration) | |
else: # video_handling == "loop" | |
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1)) | |
background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list | |
else: | |
background_frames = None | |
bg_frame_index = 0 # Initialize background frame index | |
# Use ThreadPoolExecutor for parallel processing with specified max_workers | |
with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
futures = [executor.submit(process_frame, frames[i], bg_type, bg_image, fast_mode, bg_frame_index, background_frames, color) for i in range(len(frames))] | |
for future in futures: | |
result, bg_frame_index = future.result() | |
processed_frames.append(result) | |
elapsed_time = time.time() - start_time | |
yield result, None, f"Processing frame {len(processed_frames)}... Elapsed time: {elapsed_time:.2f} seconds" | |
# Create a new video from the processed frames | |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) | |
# Add the original audio back to the processed video | |
processed_video = processed_video.set_audio(audio) | |
# Save the processed video to a temporary file using tempfile | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: | |
temp_filepath = temp_file.name | |
processed_video.write_videofile(temp_filepath, codec="libx264") | |
elapsed_time = time.time() - start_time | |
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" | |
# Return the path to the temporary file | |
yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" | |
except Exception as e: | |
print(f"Error: {e}") | |
elapsed_time = time.time() - start_time | |
yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" | |
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" | |
def process(image, bg, fast_mode=False): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cuda") | |
# Select the model based on fast_mode | |
model = birefnet_lite if fast_mode else birefnet | |
# Prediction | |
with torch.no_grad(): | |
preds = model(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
if isinstance(bg, str) and bg.startswith("#"): | |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) | |
background = Image.new("RGBA", image_size, color_rgb + (255,)) | |
elif isinstance(bg, Image.Image): | |
background = bg.convert("RGBA").resize(image_size) | |
else: | |
background = Image.open(bg).convert("RGBA").resize(image_size) | |
# Composite the image onto the background using the mask | |
image = Image.composite(image, background, mask) | |
return image | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200 frames at once. So, if you have a big video than use small chunks or Duplicate this space.") | |
with gr.Row(): | |
in_video = gr.Video(label="Input Video", interactive=True) | |
stream_image = gr.Image(label="Streaming Output", visible=False) | |
out_video = gr.Video(label="Final Output Video") | |
submit_button = gr.Button("Change Background", interactive=True) | |
with gr.Row(): | |
fps_slider = gr.Slider( | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=0, | |
label="Output FPS (0 will inherit the original fps value)", | |
interactive=True | |
) | |
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) | |
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) | |
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) | |
bg_video = gr.Video(label="Background Video", visible=False, interactive=True) | |
with gr.Column(visible=False) as video_handling_options: | |
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) | |
fast_mode_checkbox = gr.Checkbox(label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True) | |
max_workers_slider = gr.Slider( minimum=1, maximum=32, step=1, value=6, label="Max Workers", info="Determines how many Franes to process parallel", interactive=True | |
) | |
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False) # Add time textbox | |
def update_visibility(bg_type): | |
if bg_type == "Color": | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
elif bg_type == "Image": | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
elif bg_type == "Video": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
else: | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) | |
examples = gr.Examples( | |
[ | |
["rickroll-2sec.mp4", "Video", None, "background.mp4"], | |
["rickroll-2sec.mp4", "Image", "images.webp", None], | |
["rickroll-2sec.mp4", "Color", None, None], | |
], | |
inputs=[in_video, bg_type, bg_image, bg_video], | |
outputs=[stream_image, out_video, time_textbox], | |
fn=fn, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
submit_button.click( | |
fn, | |
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio, fast_mode_checkbox, max_workers_slider], | |
outputs=[stream_image, out_video, time_textbox], | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |