import gradio as gr import numpy as np from audioldm import text_to_audio, build_model # from transformers import AutoModelForCausalLM, AutoTokenizer # import torch # tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") # model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") audioldm = build_model() # audioldm=None # def predict(input, history=[]): # # tokenize the new input sentence # new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # # append the new user input tokens to the chat history # bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # # generate a response # history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # # convert the tokens to text, and then split the responses into lines # response = tokenizer.decode(history[0]).split("<|endoftext|>") # response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list # return response, history def text2audio(text, duration, guidance_scale, random_seed, n_candidates): # print(text, length, guidance_scale) waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates)) # [bs, 1, samples] waveform = [(16000, wave[0]) for wave in waveform] # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))] return waveform # iface = gr.Interface(fn=text2audio, inputs=[ # gr.Textbox(value="A man is speaking in a huge room", max_lines=1), # gr.Slider(2.5, 10, value=5, step=2.5), # gr.Slider(0, 5, value=2.5, step=0.5), # gr.Number(value=42) # ], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")], # allow_flagging="never" # ) # iface.launch(share=True) iface = gr.Blocks() with iface: gr.HTML( """

Text-to-Audio Generation with AudioLDM

[Paper] [Project page]

""" ) with gr.Group(): with gr.Box(): ############# Input textbox = gr.Textbox(value="A hammer is hitting a wooden surface", max_lines=1) with gr.Accordion("Click to change detailed configurations", open=False): seed = gr.Number(value=42, label="Change this value (any integer number) will lead to a different generation result.") duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)") guidance_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)") n_candidates = gr.Slider(1, 5, value=3, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation") ############# Output outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")] btn = gr.Button("Submit").style(full_width=True) btn.click(text2audio, inputs=[textbox, duration, guidance_scale, seed, n_candidates], outputs=outputs) gr.HTML('''
''') iface.queue(concurrency_count=2) iface.launch(debug=True) # iface.launch(debug=True, share=True)