import gradio as gr import pandas as pd import numpy as np import easyocr import torch import cv2 import PIL import sys import os import uuid from PIL import ImageFont, ImageDraw, Image this=gr.Interface.load("spaces/Omnibus/Translate-100") lang_id = { "":"", "Afrikaans": "af", "Albanian": "sq", "Amharic": "am", "Arabic": "ar", "Armenian": "hy", "Asturian": "ast", "Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg", "Bengali": "bn", "Breton": "br", "Bosnian": "bs", "Burmese": "my", "Catalan": "ca", "Cebuano": "ceb", "Chinese": "zh", "Chinese (simplified)": "zh", "Chinese (traditional)": "zh", "Croatian": "hr", "Czech": "cs", "Danish": "da", "Dutch": "nl", "English": "en", "Estonian": "et", "Fulah": "ff", "Finnish": "fi", "French": "fr", "Western Frisian": "fy", "Gaelic": "gd", "Galician": "gl", "Georgian": "ka", "German": "de", "Greek": "el", "Gujarati": "gu", "Hausa": "ha", "Hebrew": "he", "Hindi": "hi", "Haitian": "ht", "Hungarian": "hu", "Irish": "ga", "Indonesian": "id", "Igbo": "ig", "Iloko": "ilo", "Icelandic": "is", "Italian": "it", "Japanese": "ja", "Javanese": "jv", "Kazakh": "kk", "Central Khmer": "km", "Kannada": "kn", "Korean": "ko", "Luxembourgish": "lb", "Ganda": "lg", "Lingala": "ln", "Lao": "lo", "Lithuanian": "lt", "Latvian": "lv", "Malagasy": "mg", "Macedonian": "mk", "Malayalam": "ml", "Mongolian": "mn", "Marathi": "mr", "Malay": "ms", "Nepali": "ne", "Norwegian": "no", "Northern Sotho": "ns", "Occitan": "oc", "Oriya": "or", "Panjabi": "pa", "Persian": "fa", "Polish": "pl", "Pushto": "ps", "Portuguese": "pt", "Romanian": "ro", "Russian": "ru", "Sindhi": "sd", "Sinhala": "si", "Slovak": "sk", "Slovenian": "sl", "Spanish": "es", "Somali": "so", "Serbian": "sr", "Serbian (cyrillic)": "sr", "Serbian (latin)": "sr", "Swati": "ss", "Sundanese": "su", "Swedish": "sv", "Swahili": "sw", "Tamil": "ta", "Thai": "th", "Tagalog": "tl", "Tswana": "tn", "Turkish": "tr", "Ukrainian": "uk", "Urdu": "ur", "Uzbek": "uz", "Vietnamese": "vi", "Welsh": "cy", "Wolof": "wo", "Xhosa": "xh", "Yiddish": "yi", "Yoruba": "yo", "Zulu": "zu", } ocr_id = { "":"", "Afrikaans": "af", "Albanian": "sq", "Arabic": "ar", "Azerbaijani": "az", "Belarusian": "be", "Bulgarian": "bg", "Bengali": "bn", "Bosnian": "bs", "Chinese (simplified)": "ch_sim", "Chinese (traditional)": "ch_tra", "Croatian": "hr", "Czech": "cs", "Danish": "da", "Dutch": "nl", "English": "en", "Estonian": "et", "French": "fr", "German": "de", "Irish": "ga", "Hindi": "hi", "Hungarian": "hu", "Indonesian": "id", "Icelandic": "is", "Italian": "it", "Japanese": "ja", "Kannada": "kn", "Korean": "ko", "Lithuanian": "lt", "Latvian": "lv", "Mongolian": "mn", "Marathi": "mr", "Malay": "ms", "Nepali": "ne", "Norwegian": "no", "Occitan": "oc", "Polish": "pl", "Portuguese": "pt", "Romanian": "ro", "Russian": "ru", "Serbian (cyrillic)": "rs_cyrillic", "Serbian (latin)": "rs_latin", "Slovak": "sk", "Slovenian": "sl", "Spanish": "es", "Swedish": "sv", "Swahili": "sw", "Tamil": "ta", "Thai": "th", "Tagalog": "tl", "Turkish": "tr", "Ukrainian": "uk", "Urdu": "ur", "Uzbek": "uz", "Vietnamese": "vi", "Welsh": "cy", "Zulu": "zu", } def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac): im = cv2.imread(img) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) for bound in bounds: if bound[2]>=(ocr_sens): p0, p1, p2, p3 = bound[0] x = int(p0[0]) y = int(p0[1]) w = int(p2[0]) - int(x) h = int(p2[1]) - int(y) kernel = np.ones((3, 3), np.uint8) im[y:y+h, x:x+w] = cv2.dilate(im[y:y+h, x:x+w], kernel, iterations=3) im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0) else: pass im = Image.fromarray(im) for bound in bounds: if bound[2]>=(ocr_sens): p0, p1, p2, p3 = bound[0] x = int(p0[0]) y = int(p0[1]) w = int(p2[0]) - int(x) h = int(p2[1]) - int(y) draw = ImageDraw.Draw(im) text = this(bound[1],target_lang,trans_lang) font_size=int(int(h)*font_fac) font = ImageFont.truetype("./fonts/unifont-15.0.01.ttf", int(font_size)) draw.text((x, y),text, font = font, fill=(0,0,0)) else: pass return im def draw_boxes(image, bounds, ocr_sens,width=1): draw = ImageDraw.Draw(image) for bound in bounds: if bound[2]>=(ocr_sens): color = "blue" else: color = "red" p0, p1, p2, p3 = bound[0] draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) return image def detect(img, target_lang,trans_lang,ocr_sens,font_fac,target_lang2=None): if target_lang2 != None and target_lang2 != "": lang=f"{lang_id[target_lang]}" lang2=f"{lang_id[target_lang2]}" lang=[lang,lang2] else: lang=[f"{ocr_id[target_lang]}"] pass img = Image.open(img) img.thumbnail((1000,1000), Image.Resampling.LANCZOS) path = f"/tmp/{uuid.uuid4()}.jpg" img.save(path) img1 = np.array(img) reader = easyocr.Reader(lang) bounds = reader.readtext(img1) im = PIL.Image.open(path) im_out=draw_boxes(im, bounds,ocr_sens) blr_out=blur_im(path,bounds,target_lang,trans_lang,ocr_sens,font_fac) return im_out,blr_out,pd.DataFrame(bounds),pd.DataFrame(bounds).iloc[:,1:] with gr.Blocks() as robot: gr.Markdown("""

Translate Image to Image

EasyOCR and facebook/m2m100_1.2B

*translation may not be accurate
""") with gr.Accordion(label="Description",open=False): with gr.Row(): gr.Markdown("""

Drop your image in the "Image to Translate" Box
Select the Language to Detect in the Image
Select the Language to Translate to
Click "Go" Button

""") gr.Markdown("""

Translation Model: facebook/m2m100_1.2B
OCR: easyocr
Influence by:
venz/AW-05-GR-NLP-Image2Text-Multilingual-OCR
Iker/Translate-100-languages

""") with gr.Row(): with gr.Column(): im=gr.Image(label="Image to Translate",type="filepath") with gr.Column(): with gr.Group(): with gr.Row(): with gr.Column(): target_lang = gr.Dropdown(label="Detect language:", choices=list(ocr_id.keys()),value="English") trans_lang = gr.Dropdown(label="Translate to:", choices=list(lang_id.keys()),value="Chinese") with gr.Column(): ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence") font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale") ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function") go_btn=gr.Button("Go") with gr.Row(): with gr.Column(): out_im=gr.Image() with gr.Column(): trans_im=gr.Image() with gr.Row(): out_txt=gr.Textbox(lines=8) data_f=gr.Dataframe() go_btn.click(detect,[im,target_lang,trans_lang,ocr_sens,font_fac],[out_im,trans_im,out_txt,data_f]) #go_btn.click(detect,[im,target_lang,target_lang2],[out_im,trans_im,out_txt,data_f]) robot.queue(concurrency_count=10).launch()