import gradio as gr import pandas as pd import numpy as np import easyocr import torch import cv2 import PIL from PIL import ImageFont, ImageDraw, Image lang_id = { "Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast", "Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg", "Bengali": "bn", "Breton": "br", "Bosnian": "bs", "Catalan": "ca", "Cebuano": "ceb", "Czech": "cs", "Welsh": "cy", "Danish": "da", "German": "de", "Greeek": "el", "English": "en", "Spanish": "es", "Estonian": "et", "Persian": "fa", "Fulah": "ff", "Finnish": "fi", "French": "fr", "Western Frisian": "fy", "Irish": "ga", "Gaelic": "gd", "Galician": "gl", "Gujarati": "gu", "Hausa": "ha", "Hebrew": "he", "Hindi": "hi", "Croatian": "hr", "Haitian": "ht", "Hungarian": "hu", "Armenian": "hy", "Indonesian": "id", "Igbo": "ig", "Iloko": "ilo", "Icelandic": "is", "Italian": "it", "Japanese": "ja", "Javanese": "jv", "Georgian": "ka", "Kazakh": "kk", "Central Khmer": "km", "Kannada": "kn", "Korean": "ko", "Luxembourgish": "lb", "Ganda": "lg", "Lingala": "ln", "Lao": "lo", "Lithuanian": "lt", "Latvian": "lv", "Malagasy": "mg", "Macedonian": "mk", "Malayalam": "ml", "Mongolian": "mn", "Marathi": "mr", "Malay": "ms", "Burmese": "my", "Nepali": "ne", "Dutch": "nl", "Norwegian": "no", "Northern Sotho": "ns", "Occitan": "oc", "Oriya": "or", "Panjabi": "pa", "Polish": "pl", "Pushto": "ps", "Portuguese": "pt", "Romanian": "ro", "Russian": "ru", "Sindhi": "sd", "Sinhala": "si", "Slovak": "sk", "Slovenian": "sl", "Somali": "so", "Albanian": "sq", "Serbian": "sr", "Swati": "ss", "Sundanese": "su", "Swedish": "sv", "Swahili": "sw", "Tamil": "ta", "Thai": "th", "Tagalog": "tl", "Tswana": "tn", "Turkish": "tr", "Ukrainian": "uk", "Urdu": "ur", "Uzbek": "uz", "Vietnamese": "vi", "Wolof": "wo", "Xhosa": "xh", "Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu", } ocr_lang=[ 'abq', 'ady', 'af', 'ang', 'ar', 'as', 'ava', 'az', 'be', 'bg', 'bh', 'bho', 'bn', 'bs', 'ch_sim', 'ch_tra', 'che', 'cs', 'cy', 'da', 'dar', 'de', 'en', 'es', 'et', 'fa', 'fr', 'ga', 'gom', 'hi', 'hr', 'hu', 'id', 'inh', 'is', 'it', 'ja', 'kbd', 'kn', 'ko', 'ku', 'la', 'lbe', 'lez', 'lt', 'lv', 'mah', 'mai', 'mi', 'mn', 'mr', 'ms', 'mt', 'ne', 'new', 'nl', 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'ru', 'rs_cyrillic', 'rs_latin', 'sck', 'sk', 'sl', 'sq', 'sv', 'sw', 'ta', 'tab', 'te', 'th', 'tjk', 'tl', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', ] def blur_im(img,bounds): im = cv2.imread(img) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) for bound in bounds: p0, p1, p2, p3 = bound[0] x = int(p0[0]) y = int(p0[1]) w = int(p2[0]) - int(x) h = int(p2[1]) - int(y) kernel = np.ones((5, 5), np.uint8) im[y:y+h, x:x+w] = cv2.dilate(im[y:y+h, x:x+w], kernel, iterations=2) im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0) #fontpath = "tamil/Latha.ttf" text = "New Text" #fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", 40) font = ImageFont.load("arial.pil", 40) #font = ImageFont.truetype(fontpath, 32) im = Image.fromarray(im) for bound in bounds: p0, p1, p2, p3 = bound[0] x = int(p0[0]) y = int(p0[1]) w = int(p2[0]) - int(x) h = int(p2[1]) - int(y) draw = ImageDraw.Draw(im) draw.text((x+5, y+5),text, font = font, fill=(0,0,0)) #img_tamil = np.array(img_pil) return im def draw_boxes(image, bounds, color='blue', width=1): draw = ImageDraw.Draw(image) for bound in bounds: p0, p1, p2, p3 = bound[0] draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) return image def detect(img, target_lang,target_lang2=None): if target_lang2 != None and target_lang2 != "": lang=f"{lang_id[target_lang]}" lang2=f"{lang_id[target_lang2]}" lang=[lang,lang2] else: lang=[f"{lang_id[target_lang]}"] pass #global bounds reader = easyocr.Reader(lang) bounds = reader.readtext(img) im = PIL.Image.open(img) im_out=draw_boxes(im, bounds) #im.save('result.jpg') blr_out=blur_im(img,bounds) return im_out,blr_out,pd.DataFrame(bounds),pd.DataFrame(bounds).iloc[:,1:] with gr.Blocks() as robot: with gr.Row(): with gr.Column(): im=gr.Image(type="filepath") with gr.Column(): with gr.Row(): target_lang = gr.Dropdown(label="Detect language", choices=list(lang_id.keys()),value="English") target_lang2 = gr.Dropdown(label="Detect language", choices=list(lang_id.keys()),value="") go_btn=gr.Button() with gr.Row(): with gr.Column(): out_im=gr.Image() with gr.Column(): out_txt=gr.Textbox(lines=8) data_f=gr.Dataframe() with gr.Row(): with gr.Column(): trans_im=gr.Image() gr.Column() go_btn.click(detect,[im,target_lang,target_lang2],[out_im,trans_im,out_txt,data_f]) robot.queue(concurrency_count=10).launch()