import spaces import torch from controlnet_aux import LineartDetector from diffusers import ControlNetModel,UniPCMultistepScheduler,StableDiffusionControlNetPipeline from PIL import Image device= "cuda" if torch.cuda.is_available() else "cpu" print("Using device for I2I_2:", device) @spaces.GPU(duration=100) def I2I_2(image, prompt,size,num_inference_steps,guidance_scale): processor = LineartDetector.from_pretrained("lllyasviel/Annotators") checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart" controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(device) pipe = StableDiffusionControlNetPipeline.from_pretrained( "radames/stable-diffusion-v1-5-img2img", controlnet=controlnet, torch_dtype=torch.float16 ).to(device) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() if not isinstance(image, Image.Image): image = Image.fromarray(image) image.resize((size,size)) image=processor(image) generator = torch.Generator(device=device).manual_seed(0) image = pipe(prompt+"best quality, extremely detailed", num_inference_steps=num_inference_steps, generator=generator, image=image,negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",guidance_scale=guidance_scale).images[0] return image