import os import io from PIL import Image from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) # read local .env file hf_api_key = os.environ['HF_API_KEY'] # Helper function import requests, json # API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5" API_URL = "https://api-inference.huggingface.co/models/cloudqi/cqi_text_to_image_pt_v0" #Text-to-image endpoint def get_completion(inputs, parameters=None, ENDPOINT_URL=API_URL): headers = { "Authorization": f"Bearer {hf_api_key}", "Content-Type": "application/json" } data = { "inputs": inputs } if parameters is not None: data.update({"parameters": parameters}) response = requests.request("POST",ENDPOINT_URL,headers=headers,data=json.dumps(data)) return response.content import gradio as gr def generate(prompt): output = get_completion(prompt) result_image = Image.open(io.BytesIO(output)) return result_image # def loadGUI(): # gr.close_all() # demo = gr.Interface(fn=generate, # inputs=[gr.Textbox(label="Your prompt")], # outputs=[gr.Image(label="Result")], # title="Image Generation with Stable Diffusion", # description="Generate any image with Stable Diffusion", # allow_flagging="never", # examples=["the spirit of a tamagotchi wandering in the city of Vienna","a mecha robot in a favela"]) # demo.launch(share=True) import gradio as gr def generate(prompt, negative_prompt, steps, guidance, width, height): params = { "negative_prompt": negative_prompt, "num_inference_steps": steps, "guidance_scale": guidance, "width": width, "height": height } output = get_completion(prompt, params) pil_image = Image.open(io.BytesIO(output)) return pil_image def loadGUI(): gr.close_all() demo = gr.Interface(fn=generate, inputs=[ gr.Textbox(label="Your prompt"), gr.Textbox(label="Negative prompt"), gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=25, info="In how many steps will the denoiser denoise the image?"), gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=7, info="Controls how much the text prompt influences the result"), gr.Slider(label="Width", minimum=64, maximum=512, step=64, value=512), gr.Slider(label="Height", minimum=64, maximum=512, step=64, value=512), ], outputs=[gr.Image(label="Result")], title="Image Generation with Stable Diffusion", description="Generate any image with Stable Diffusion", allow_flagging="never" ) demo.launch(share=True) def main(): loadGUI() if __name__ == "__main__": main()