import streamlit as st import pandas as pd from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline # Function to load the pre-trained model def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) return tokenizer, model # Streamlit app st.title("Multi-label Toxicity Detection App") st.write("Enter a text and select the fine-tuned model to get the toxicity analysis.") # Input text default_text = "I will kill you if you do not give me my pop tarts." text = st.text_input("Enter your text:", value=default_text) category = {'LABEL_0': 'toxic', 'LABEL_1': 'severe_toxic', 'LABEL_2': 'obscene', 'LABEL_3': 'threat', 'LABEL_4': 'insult', 'LABEL_5': 'identity_hate'} # Model selection model_options = { "Olivernyu/finetuned_bert_base_uncased": { "description": "This model detects different types of toxicity like threats, obscenity, insults, and identity-based hate in text.", }, "distilbert-base-uncased-finetuned-sst-2-english": { "labels": ["NEGATIVE", "POSITIVE"], "description": "This model classifies text into positive or negative sentiment. It is based on DistilBERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.", }, "textattack/bert-base-uncased-SST-2": { "labels": ["LABEL_0", "LABEL_1"], "description": "This model classifies text into positive(LABEL_1) or negative(LABEL_0) sentiment. It is based on BERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.", }, "cardiffnlp/twitter-roberta-base-sentiment": { "labels": ["LABEL_0", "LABEL_1", "LABEL_2"], "description": "This model classifies tweets into negative (LABEL_0), neutral(LABEL_1), or positive(LABEL_2) sentiment. It is based on RoBERTa and fine-tuned on a large dataset of tweets.", }, } selected_model = st.selectbox("Choose a fine-tuned model:", model_options) st.write("### Model Information") st.write(f"**Description:** {model_options[selected_model]['description']}") # Load the model and perform toxicity analysis if st.button("Analyze"): if not text: st.write("Please enter a text.") else: with st.spinner("Analyzing toxicity..."): if selected_model == "Olivernyu/finetuned_bert_base_uncased": tokenizer, model = load_model(selected_model) toxicity_detector = pipeline("text-classification", tokenizer=tokenizer, model=model) outputs = toxicity_detector(text, top_k=2) category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] scores = [output["score"] for output in outputs[0]] # Get the highest toxicity class and its probability max_score_index = scores.index(max(scores)) highest_toxicity_class = category_names[max_score_index] highest_probability = scores[max_score_index] results = [] for item in outputs: results.append((category[item['label']], item['score'])) # Create a table with the input text (or a portion of it), the highest toxicity class, and its probability table_data = { "Text (portion)": [text[:50]], f"{results[0][0]}": results[0][1], f"{results[1][0]}": results[1][1] } table_df = pd.DataFrame(table_data) st.table(table_df) else: sentiment_pipeline = load_model(selected_model) result = sentiment_pipeline(text) st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})") if result[0]['label'] in ['POSITIVE', 'LABEL_1'] and result[0]['score']> 0.9: st.balloons() elif result[0]['label'] in ['NEGATIVE', 'LABEL_0'] and result[0]['score']> 0.9: st.error("Hater detected.") else: st.write("Enter a text and click 'Analyze' to perform toxicity analysis.")