import streamlit as st
from transformers import pipeline
st.set_page_config(page_title="Common NLP Tasks")
st.title("Common NLP Tasks")
st.subheader("Use the menu on the left to select a NLP task to do (click on > if closed).")
expander = st.sidebar.expander("About")
expander.write("This web app allows you to perform common Natural Language Processing tasks, select a task below to get started.")
st.sidebar.header("What will you like to do?")
option = st.sidebar.radio("", ["Extractive question answering", "Text summarization", "Text generation", "Sentiment analysis"])
@st.cache(show_spinner=False, allow_output_mutation=True)
def question_model():
model_name = "deepset/roberta-base-squad2"
question_answerer = pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
return question_answerer
@st.cache(show_spinner=False, allow_output_mutation=True)
def summarization_model():
summarizer = pipeline("summarization")
return summarizer
@st.cache(show_spinner=False, allow_output_mutation=True)
def generation_model():
generator = pipeline("text-generation")
return generator
@st.cache(show_spinner=False, allow_output_mutation=True)
def sentiment_model():
sentiment_analysis = pipeline("sentiment-analysis")
return sentiment_analysis
if option == "Extractive question answering":
st.markdown("
Extract answer from text
", unsafe_allow_html=True)
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
if source == "I want to input some text":
with open("sample.txt", "r") as text_file:
sample_text = text_file.read()
context = st.text_area('Use the example below or input your own text in English (10,000 characters max)', value=sample_text, max_chars=10000, height=330)
question = st.text_input(label='Enter your question')
button = st.button('Get answer')
if button:
question_answerer = question_model()
with st.spinner(text="Getting answer..."):
answer = question_answerer(context=context, question=question)
answer = answer["answer"]
st.write(f"Answer ---> {answer}")
elif source == "I want to upload a file":
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
if uploaded_file is not None:
context = st.text_area("", value=uploaded_file.read(), height=330)
question = st.text_input(label="Enter your question")
button = st.button("Get answer")
if button:
question_answerer = question_model()
with st.spinner(text="Getting answer..."):
answer = question_answerer(context=context, question=question)
st.write(f"Answer ---> {answer}")
elif option == 'Text summarization':
st.markdown("Summarize text
", unsafe_allow_html=True)
sample_text = "sample text"
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
if source == "I want to input some text":
text = st.text_area('Input a text in English (between 1,000 and 10,000 characters)', value=sample_text, max_chars=10000, height=330)
button = st.button('Get summary')
if button:
summarizer = summarization_model()
with st.spinner(text="Summarizing text..."):
summary = summarizer(text, max_length=130, min_length=30)
st.write(summary)
elif source == "I want to upload a file":
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
button = st.button('Get summary')
if button:
summarizer = summarization_model()
with st.spinner(text="Summarizing text..."):
summary = summarizer(text, max_length=130, min_length=30)
st.write(summary)
elif option == 'Text generation':
st.markdown("Generate text
", unsafe_allow_html=True)
text = st.text_input(label='Enter one line of text and let the NLP model generate the rest for you')
button = st.button('Generate text')
if button:
generator = generation_model()
with st.spinner(text="Generating text..."):
generated_text = generator(text, max_length=50)
st.write(generated_text[0]["generated_text"])
elif option == 'Sentiment analysis':
st.markdown("Classify review
", unsafe_allow_html=True)
text = st.text_input(label='Enter a sentence to get its sentiment analysis')
button = st.button('Get sentiment analysis')
if button:
sentiment_analysis = sentiment_model()
with st.spinner(text="Getting sentiment analysis..."):
sentiment = sentiment_analysis(text)
st.write(sentiment[0]["label"])