import string import math import torch from data import data_utils def get_symbols_to_strip_from_output(generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.bos, generator.eos} def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x def eval_caption(task, generator, models, sample): transtab = str.maketrans({key: None for key in string.punctuation}) hypos = task.inference_step(generator, models, sample) results = [] for i, sample_id in enumerate(sample["id"].tolist()): detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator) results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()}) return results, None def eval_vqa_gen(task, generator, models, sample): encoder_out = models[0].encoder( sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], patch_images=sample["net_input"]["patch_images"], patch_masks=sample["net_input"]["patch_masks"] ) device = sample["net_input"]["src_tokens"].device eos_item = torch.tensor([task.src_dict.eos()]) pad = task.src_dict.pad() valid_result = [] for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list): valid_size = len(valid_answers) valid_tgt_items = [ torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers ] valid_prev_items = [ torch.cat([torch.tensor(decoder_prompt), valid_answer]) for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers ] valid_constraint_mask_items = [ torch.cat( [torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0 ) for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks ] valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device) valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device) valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device) new_encoder_out = {} new_encoder_out["encoder_out"] = [ encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) ] new_encoder_out["encoder_padding_mask"] = [ encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) ] new_encoder_out["position_embeddings"] = [ encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) ] decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out) decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True) scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0) scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) scores = scores.sum(1) scores = scores.view(-1, valid_size) valid_result.append(scores) valid_result = torch.cat(valid_result, dim=-1) predicts = valid_result.argmax(1).tolist() hyps = [task.index2ans[predict_index] for predict_index in predicts] results = [{"question_id": int(id), "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)] scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] return results, scores def eval_refcoco(task, generator, models, sample): def _calculate_ap_score(hyps, refs, thresh=0.5): interacts = torch.cat( [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]), torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])], dim=1 ) area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1]) interacts_w = interacts[:, 2] - interacts[:, 0] interacts_h = interacts[:, 3] - interacts[:, 1] area_interacts = interacts_w * interacts_h ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6) return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float() gen_out = task.inference_step(generator, models, sample) hyps = [] for i in range(len(gen_out)): hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins) hyps = torch.stack(hyps, dim=0) hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) results = [ {"uniq_id": sample_id, "box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]} for i, sample_id in enumerate(sample["id"].tolist()) ] scores = _calculate_ap_score(hyps, sample['region_coords'].float()) return results, scores def eval_step(task, generator, models, sample): if task.cfg._name == 'caption': return eval_caption(task, generator, models, sample) elif task.cfg._name == 'vqa_gen': return eval_vqa_gen(task, generator, models, sample) elif task.cfg._name == 'refcoco': return eval_refcoco(task, generator, models, sample) else: raise NotImplementedError