# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import time from collections import OrderedDict from typing import Dict, List import numpy as np from fairseq.data import data_utils from . import FairseqDataset logger = logging.getLogger(__name__) class MultiCorpusDataset(FairseqDataset): """ Stores multiple instances of FairseqDataset together. Requires each instance to be the same dataset, as the collate method needs to work on batches with samples from each dataset. Allows specifying a distribution over the datasets to use. Note that unlike MultiCorpusSampledDataset, this distribution allows sampling for each item, rather than on a batch level. Each time ordered_indices() is called, a new sample is generated with the specified distribution. Args: datasets: a OrderedDict of FairseqDataset instances. distribution: a List containing the probability of getting an utterance from corresponding dataset seed: random seed for sampling the datsets sort_indices: if true, will sort the ordered indices by size batch_sample: if true, will ensure each batch is from a single dataset """ def __init__( self, datasets: Dict[str, FairseqDataset], distribution: List[float], seed: int, sort_indices: bool = False, batch_sample: bool = False, distributed_rank=None, ): super().__init__() assert isinstance(datasets, OrderedDict) assert len(datasets) == len(distribution) assert sum(distribution) == 1 self.datasets = datasets self.distribution = distribution self.seed = seed self.sort_indices = sort_indices self.batch_sample = batch_sample self.distributed_rank = distributed_rank # Avoid repeated conversions to list later self.dataset_list = list(datasets.values()) self.total_num_instances = 0 first_dataset = list(self.datasets.values())[0] self.dataset_offsets = [] for dataset in datasets.values(): assert isinstance(dataset, FairseqDataset) assert type(dataset) is type(first_dataset) self.dataset_offsets.append(self.total_num_instances) self.total_num_instances += len(dataset) def ordered_indices(self): start = time.time() with data_utils.numpy_seed(self.seed, self.epoch): logger.info(f"sampling new dataset with seed {self.seed} epoch {self.epoch}") sampled_indices = [] num_selected_instances = 0 # For each dataset i, sample self.distribution[i] * self.total_num_instances for i, key in enumerate(self.datasets): if i < len(self.datasets) - 1: num_instances = int(self.distribution[i] * self.total_num_instances) high = self.dataset_offsets[i + 1] else: num_instances = self.total_num_instances - num_selected_instances high = self.total_num_instances logger.info(f"sampling {num_instances} from {key} dataset") num_selected_instances += num_instances # First, add k copies of the dataset where k = num_instances // len(dataset). # This ensures an equal distribution of the data points as much as possible. # For the remaining entries randomly sample them dataset_size = len(self.datasets[key]) num_copies = num_instances // dataset_size dataset_indices = ( np.random.permutation(high - self.dataset_offsets[i]) + self.dataset_offsets[i] )[: num_instances - num_copies * dataset_size] if num_copies > 0: sampled_indices += list( np.concatenate( ( np.repeat( np.arange(self.dataset_offsets[i], high), num_copies ), dataset_indices, ) ) ) else: sampled_indices += list(dataset_indices) assert ( len(sampled_indices) == self.total_num_instances ), f"{len(sampled_indices)} vs {self.total_num_instances}" np.random.shuffle(sampled_indices) if self.sort_indices: sampled_indices.sort(key=lambda i: self.num_tokens(i)) logger.info( "multi_corpus_dataset ordered_indices took {}s".format( time.time() - start ) ) return np.array(sampled_indices, dtype=np.int64) def _map_index(self, index: int): """ If dataset A has length N and dataset B has length M then index 1 maps to index 1 of dataset A, and index N + 1 maps to index 1 of B. """ counter = 0 for key, dataset in self.datasets.items(): if index < counter + len(dataset): return index - counter, key counter += len(dataset) raise ValueError( "Invalid index: {}, max: {}".format(index, self.total_num_instances) ) def __len__(self): """ Length of this dataset is the sum of individual datasets """ return self.total_num_instances def __getitem__(self, index): new_index, key = self._map_index(index) try: item = self.datasets[key][new_index] item["full_id"] = index return item except Exception as e: e.args = (f"Error from {key} dataset", *e.args) raise def collater(self, samples): """ If we are doing batch sampling, then pick the right collater to use. Otherwise we assume all collaters are the same. """ if len(samples) == 0: return None if "full_id" in samples[0]: _, key = self._map_index(samples[0]["full_id"]) try: batch = self.datasets[key].collater(samples) except Exception: print(f"Collating failed for key {key}", flush=True) raise return batch else: # Subclasses may override __getitem__ to not specify full_id return list(self.datasets.values())[0].collater(samples) def num_tokens(self, index: int): index, key = self._map_index(index) return self.datasets[key].num_tokens(index) def size(self, index: int): index, key = self._map_index(index) return self.datasets[key].size(index) @property def can_reuse_epoch_itr_across_epochs(self): return False def set_epoch(self, epoch, **unused): super().set_epoch(epoch) logger.info(f"setting epoch of multi_corpus_dataset to {epoch}") self.epoch = epoch @property def supports_prefetch(self): return False @property def supports_fetch_outside_dataloader(self): return all( self.datasets[key].supports_fetch_outside_dataloader for key in self.datasets ) def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): if not self.batch_sample: return super().batch_by_size( indices, max_tokens, max_sentences, required_batch_size_multiple ) dataset_indices = {key: [] for key in self.datasets} for i in indices: _, key = self._map_index(i) dataset_indices[key].append(i) batches = [] for key in dataset_indices: cur_batches = super().batch_by_size( np.array(dataset_indices[key], dtype=np.int64), max_tokens, max_sentences, required_batch_size_multiple, ) logger.info(f"Created {len(cur_batches)} batches for dataset {key}") batches += cur_batches # If this dataset is used in a distributed training setup, # then shuffle such that the order is seeded by the distributed rank # as well if self.distributed_rank is not None: with data_utils.numpy_seed(self.seed, self.epoch, self.distributed_rank): np.random.shuffle(batches) return batches