# RoBERTa: A Robustly Optimized BERT Pretraining Approach https://arxiv.org/abs/1907.11692 ## Introduction RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details. ### What's New: - December 2020: German model (GottBERT) is available: [GottBERT](https://github.com/pytorch/fairseq/tree/main/examples/gottbert). - January 2020: Italian model (UmBERTo) is available from Musixmatch Research: [UmBERTo](https://github.com/musixmatchresearch/umberto). - November 2019: French model (CamemBERT) is available: [CamemBERT](https://github.com/pytorch/fairseq/tree/main/examples/camembert). - November 2019: Multilingual encoder (XLM-RoBERTa) is available: [XLM-R](https://github.com/pytorch/fairseq/tree/main/examples/xlmr). - September 2019: TensorFlow and TPU support via the [transformers library](https://github.com/huggingface/transformers). - August 2019: RoBERTa is now supported in the [pytorch-transformers library](https://github.com/huggingface/pytorch-transformers). - August 2019: Added [tutorial for finetuning on WinoGrande](https://github.com/pytorch/fairseq/tree/main/examples/roberta/wsc#roberta-training-on-winogrande-dataset). - August 2019: Added [tutorial for pretraining RoBERTa using your own data](README.pretraining.md). ## Pre-trained models Model | Description | # params | Download ---|---|---|--- `roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz) `roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz) `roberta.large.mnli` | `roberta.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz) `roberta.large.wsc` | `roberta.large` finetuned on [WSC](wsc/README.md) | 355M | [roberta.large.wsc.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz) ## Results **[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)** _(dev set, single model, single-task finetuning)_ Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B ---|---|---|---|---|---|---|---|--- `roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2 `roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4 `roberta.large.mnli` | 90.2 | - | - | - | - | - | - | - **[SuperGLUE (Wang et al., 2019)](https://super.gluebenchmark.com/)** _(dev set, single model, single-task finetuning)_ Model | BoolQ | CB | COPA | MultiRC | RTE | WiC | WSC ---|---|---|---|---|---|---|--- `roberta.large` | 86.9 | 98.2 | 94.0 | 85.7 | 89.5 | 75.6 | - `roberta.large.wsc` | - | - | - | - | - | - | 91.3 **[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)** _(dev set, no additional data used)_ Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1 ---|---|--- `roberta.large` | 88.9/94.6 | 86.5/89.4 **[RACE (Lai et al., 2017)](http://www.qizhexie.com/data/RACE_leaderboard.html)** _(test set)_ Model | Accuracy | Middle | High ---|---|---|--- `roberta.large` | 83.2 | 86.5 | 81.3 **[HellaSwag (Zellers et al., 2019)](https://rowanzellers.com/hellaswag/)** _(test set)_ Model | Overall | In-domain | Zero-shot | ActivityNet | WikiHow ---|---|---|---|---|--- `roberta.large` | 85.2 | 87.3 | 83.1 | 74.6 | 90.9 **[Commonsense QA (Talmor et al., 2019)](https://www.tau-nlp.org/commonsenseqa)** _(test set)_ Model | Accuracy ---|--- `roberta.large` (single model) | 72.1 `roberta.large` (ensemble) | 72.5 **[Winogrande (Sakaguchi et al., 2019)](https://arxiv.org/abs/1907.10641)** _(test set)_ Model | Accuracy ---|--- `roberta.large` | 78.1 **[XNLI (Conneau et al., 2018)](https://arxiv.org/abs/1809.05053)** _(TRANSLATE-TEST)_ Model | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur ---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--- `roberta.large.mnli` | 91.3 | 82.91 | 84.27 | 81.24 | 81.74 | 83.13 | 78.28 | 76.79 | 76.64 | 74.17 | 74.05 | 77.5 | 70.9 | 66.65 | 66.81 ## Example usage ##### Load RoBERTa from torch.hub (PyTorch >= 1.1): ```python import torch roberta = torch.hub.load('pytorch/fairseq', 'roberta.large') roberta.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Load RoBERTa (for PyTorch 1.0 or custom models): ```python # Download roberta.large model wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz tar -xzvf roberta.large.tar.gz # Load the model in fairseq from fairseq.models.roberta import RobertaModel roberta = RobertaModel.from_pretrained('/path/to/roberta.large', checkpoint_file='model.pt') roberta.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Apply Byte-Pair Encoding (BPE) to input text: ```python tokens = roberta.encode('Hello world!') assert tokens.tolist() == [0, 31414, 232, 328, 2] roberta.decode(tokens) # 'Hello world!' ``` ##### Extract features from RoBERTa: ```python # Extract the last layer's features last_layer_features = roberta.extract_features(tokens) assert last_layer_features.size() == torch.Size([1, 5, 1024]) # Extract all layer's features (layer 0 is the embedding layer) all_layers = roberta.extract_features(tokens, return_all_hiddens=True) assert len(all_layers) == 25 assert torch.all(all_layers[-1] == last_layer_features) ``` ##### Use RoBERTa for sentence-pair classification tasks: ```python # Download RoBERTa already finetuned for MNLI roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') roberta.eval() # disable dropout for evaluation # Encode a pair of sentences and make a prediction tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.') roberta.predict('mnli', tokens).argmax() # 0: contradiction # Encode another pair of sentences tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.') roberta.predict('mnli', tokens).argmax() # 2: entailment ``` ##### Register a new (randomly initialized) classification head: ```python roberta.register_classification_head('new_task', num_classes=3) logprobs = roberta.predict('new_task', tokens) # tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=) ``` ##### Batched prediction: ```python import torch from fairseq.data.data_utils import collate_tokens roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') roberta.eval() batch_of_pairs = [ ['Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.'], ['Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.'], ['potatoes are awesome.', 'I like to run.'], ['Mars is very far from earth.', 'Mars is very close.'], ] batch = collate_tokens( [roberta.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1 ) logprobs = roberta.predict('mnli', batch) print(logprobs.argmax(dim=1)) # tensor([0, 2, 1, 0]) ``` ##### Using the GPU: ```python roberta.cuda() roberta.predict('new_task', tokens) # tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=) ``` ## Advanced usage #### Filling masks: RoBERTa can be used to fill `` tokens in the input. Some examples from the [Natural Questions dataset](https://ai.google.com/research/NaturalQuestions/): ```python roberta.fill_mask('The first Star wars movie came out in ', topk=3) # [('The first Star wars movie came out in 1977', 0.9504708051681519, ' 1977'), ('The first Star wars movie came out in 1978', 0.009986862540245056, ' 1978'), ('The first Star wars movie came out in 1979', 0.009574787691235542, ' 1979')] roberta.fill_mask('Vikram samvat calender is official in ', topk=3) # [('Vikram samvat calender is official in India', 0.21878819167613983, ' India'), ('Vikram samvat calender is official in Delhi', 0.08547237515449524, ' Delhi'), ('Vikram samvat calender is official in Gujarat', 0.07556215673685074, ' Gujarat')] roberta.fill_mask(' is the common currency of the European Union', topk=3) # [('Euro is the common currency of the European Union', 0.9456493854522705, 'Euro'), ('euro is the common currency of the European Union', 0.025748178362846375, 'euro'), ('€ is the common currency of the European Union', 0.011183084920048714, '€')] ``` #### Pronoun disambiguation (Winograd Schema Challenge): RoBERTa can be used to disambiguate pronouns. First install spaCy and download the English-language model: ```bash pip install spacy python -m spacy download en_core_web_lg ``` Next load the `roberta.large.wsc` model and call the `disambiguate_pronoun` function. The pronoun should be surrounded by square brackets (`[]`) and the query referent surrounded by underscores (`_`), or left blank to return the predicted candidate text directly: ```python roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.wsc', user_dir='examples/roberta/wsc') roberta.cuda() # use the GPU (optional) roberta.disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.') # True roberta.disambiguate_pronoun('The trophy would not fit in the brown _suitcase_ because [it] was too big.') # False roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] feared violence.') # 'The city councilmen' roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] advocated violence.') # 'demonstrators' ``` See the [RoBERTA Winograd Schema Challenge (WSC) README](wsc/README.md) for more details on how to train this model. #### Extract features aligned to words: By default RoBERTa outputs one feature vector per BPE token. You can instead realign the features to match [spaCy's word-level tokenization](https://spacy.io/usage/linguistic-features#tokenization) with the `extract_features_aligned_to_words` method. This will compute a weighted average of the BPE-level features for each word and expose them in spaCy's `Token.vector` attribute: ```python doc = roberta.extract_features_aligned_to_words('I said, "hello RoBERTa."') assert len(doc) == 10 for tok in doc: print('{:10}{} (...)'.format(str(tok), tok.vector[:5])) # tensor([-0.1316, -0.0386, -0.0832, -0.0477, 0.1943], grad_fn=) (...) # I tensor([ 0.0559, 0.1541, -0.4832, 0.0880, 0.0120], grad_fn=) (...) # said tensor([-0.1565, -0.0069, -0.8915, 0.0501, -0.0647], grad_fn=) (...) # , tensor([-0.1318, -0.0387, -0.0834, -0.0477, 0.1944], grad_fn=) (...) # " tensor([-0.0486, 0.1818, -0.3946, -0.0553, 0.0981], grad_fn=) (...) # hello tensor([ 0.0079, 0.1799, -0.6204, -0.0777, -0.0923], grad_fn=) (...) # RoBERTa tensor([-0.2339, -0.1184, -0.7343, -0.0492, 0.5829], grad_fn=) (...) # . tensor([-0.1341, -0.1203, -0.1012, -0.0621, 0.1892], grad_fn=) (...) # " tensor([-0.1341, -0.1203, -0.1012, -0.0621, 0.1892], grad_fn=) (...) # tensor([-0.0930, -0.0392, -0.0821, 0.0158, 0.0649], grad_fn=) (...) ``` #### Evaluating the `roberta.large.mnli` model: Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set. ```python label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'} ncorrect, nsamples = 0, 0 roberta.cuda() roberta.eval() with open('glue_data/MNLI/dev_matched.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[8], tokens[9], tokens[-1] tokens = roberta.encode(sent1, sent2) prediction = roberta.predict('mnli', tokens).argmax().item() prediction_label = label_map[prediction] ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) # Expected output: 0.9060 ``` ## Finetuning - [Finetuning on GLUE](README.glue.md) - [Finetuning on custom classification tasks (e.g., IMDB)](README.custom_classification.md) - [Finetuning on Winograd Schema Challenge (WSC)](wsc/README.md) - [Finetuning on Commonsense QA (CQA)](commonsense_qa/README.md) ## Pretraining using your own data See the [tutorial for pretraining RoBERTa using your own data](README.pretraining.md). ## Citation ```bibtex @article{liu2019roberta, title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach}, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, journal={arXiv preprint arXiv:1907.11692}, year = {2019}, } ```