# BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension [https://arxiv.org/abs/1910.13461](https://arxiv.org/abs/1910.13461) ## Introduction BART is sequence-to-sequence model trained with denoising as pretraining objective. We show that this pretraining objective is more generic and show that we can match [RoBERTa](../roberta) results on SQuAD and GLUE and gain state-of-the-art results on summarization (XSum, CNN dataset), long form generative question answering (ELI5) and dialog response genration (ConvAI2). See the associated paper for more details. ## Pre-trained models Model | Description | # params | Download ---|---|---|--- `bart.base` | BART model with 6 encoder and decoder layers | 140M | [bart.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz) `bart.large` | BART model with 12 encoder and decoder layers | 400M | [bart.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz) `bart.large.mnli` | `bart.large` finetuned on `MNLI` | 400M | [bart.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz) `bart.large.cnn` | `bart.large` finetuned on `CNN-DM` | 400M | [bart.large.cnn.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz) `bart.large.xsum` | `bart.large` finetuned on `Xsum` | 400M | [bart.large.xsum.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz) ## Results **[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)** _(dev set, single model, single-task finetuning)_ Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B ---|---|---|---|---|---|---|---|--- `roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4 `bart.large` | 89.9 | 94.9 | 92.5 | 87.0 | 96.6 | 90.4 | 62.8 | 91.2 **[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)** _(dev set, no additional data used)_ Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1 ---|---|--- `roberta.large` | 88.9/94.6 | 86.5/89.4 `bart.large` | 88.8/94.6 | 86.1/89.2 **[CNN/Daily Mail](http://nlpprogress.com/english/summarization.html)** _(test set, no additional data used)_ Model | R1 | R2 | RL ---|---|---|--- `BERTSUMEXTABS` | 42.13 | 19.60 | 39.18 `bart.large` | 44.16 | 21.28 | 40.90 ## Example usage ##### Load BART from torch.hub (PyTorch >= 1.1): ```python import torch bart = torch.hub.load('pytorch/fairseq', 'bart.large') bart.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Load BART (for PyTorch 1.0 or custom models): ```python # Download bart.large model wget https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz tar -xzvf bart.large.tar.gz # Load the model in fairseq from fairseq.models.bart import BARTModel bart = BARTModel.from_pretrained('/path/to/bart.large', checkpoint_file='model.pt') bart.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Apply Byte-Pair Encoding (BPE) to input text: ```python tokens = bart.encode('Hello world!') assert tokens.tolist() == [0, 31414, 232, 328, 2] bart.decode(tokens) # 'Hello world!' ``` ##### Extract features from BART: ```python # Extract the last layer's features last_layer_features = bart.extract_features(tokens) assert last_layer_features.size() == torch.Size([1, 5, 1024]) # Extract all layer's features from decoder (layer 0 is the embedding layer) all_layers = bart.extract_features(tokens, return_all_hiddens=True) assert len(all_layers) == 13 assert torch.all(all_layers[-1] == last_layer_features) ``` ##### Use BART for sentence-pair classification tasks: ```python # Download BART already finetuned for MNLI bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli') bart.eval() # disable dropout for evaluation # Encode a pair of sentences and make a prediction tokens = bart.encode('BART is a seq2seq model.', 'BART is not sequence to sequence.') bart.predict('mnli', tokens).argmax() # 0: contradiction # Encode another pair of sentences tokens = bart.encode('BART is denoising autoencoder.', 'BART is version of autoencoder.') bart.predict('mnli', tokens).argmax() # 2: entailment ``` ##### Register a new (randomly initialized) classification head: ```python bart.register_classification_head('new_task', num_classes=3) logprobs = bart.predict('new_task', tokens) ``` ##### Batched prediction: ```python import torch from fairseq.data.data_utils import collate_tokens bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli') bart.eval() batch_of_pairs = [ ['BART is a seq2seq model.', 'BART is not sequence to sequence.'], ['BART is denoising autoencoder.', 'BART is version of autoencoder.'], ] batch = collate_tokens( [bart.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1 ) logprobs = bart.predict('mnli', batch) print(logprobs.argmax(dim=1)) # tensor([0, 2]) ``` ##### Using the GPU: ```python bart.cuda() bart.predict('new_task', tokens) ``` #### Filling masks: BART can be used to fill multiple `` tokens in the input. ```python bart = torch.hub.load('pytorch/fairseq', 'bart.base') bart.eval() bart.fill_mask(['The cat on the .'], topk=3, beam=10) # [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))]] ``` Note that by default we enforce the output length to match the input length. This can be disabled by setting ``match_source_len=False``: ``` bart.fill_mask(['The cat on the .'], topk=3, beam=10, match_source_len=False) # [[('The cat was on the ground.', tensor(-0.6185)), ('The cat was asleep on the couch.', tensor(-0.6276)), ('The cat was on the floor.', tensor(-0.6800))]] ``` Example code to fill masks for a batch of sentences using GPU ``` bart.cuda() bart.fill_mask(['The cat on the .', 'The dog on the .'], topk=3, beam=10) # [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))], [('The dog was on the ground.', tensor(-0.6190)), ('The dog lay on the ground.', tensor(-0.6711)), ('The dog was asleep on the couch', tensor(-0.6796))]] ``` #### Evaluating the `bart.large.mnli` model: Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set. ```python label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'} ncorrect, nsamples = 0, 0 bart.cuda() bart.eval() with open('glue_data/MNLI/dev_matched.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[8], tokens[9], tokens[-1] tokens = bart.encode(sent1, sent2) prediction = bart.predict('mnli', tokens).argmax().item() prediction_label = label_map[prediction] ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) # Expected output: 0.9010 ``` #### Evaluating the `bart.large.cnn` model: - Follow instructions [here](https://github.com/abisee/cnn-dailymail) to download and process into data-files such that `test.source` and `test.target` has one line for each non-tokenized sample. - For simpler preprocessing, you can also `wget https://cdn-datasets.huggingface.co/summarization/cnn_dm_v2.tgz`, although there is no guarantee of identical scores - `huggingface/transformers` has a simpler interface that supports [single-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_eval.py) and [multi-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_distributed_eval.py) beam search. In `huggingface/transformers`, the BART models' paths are `facebook/bart-large-cnn` and `facebook/bart-large-xsum`. In `fairseq`, summaries can be generated using: ```bash cp data-bin/cnn_dm/dict.source.txt checkpoints/ python examples/bart/summarize.py \ --model-dir pytorch/fairseq \ --model-file bart.large.cnn \ --src cnn_dm/test.source \ --out cnn_dm/test.hypo ``` For calculating rouge, install `files2rouge` from [here](https://github.com/pltrdy/files2rouge). ```bash export CLASSPATH=/path/to/stanford-corenlp-full-2016-10-31/stanford-corenlp-3.7.0.jar # Tokenize hypothesis and target files. cat test.hypo | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.tokenized cat test.target | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.target files2rouge test.hypo.tokenized test.hypo.target # Expected output: (ROUGE-2 Average_F: 0.21238) ``` ## Finetuning - [Finetuning on GLUE](README.glue.md) - [Finetuning on CNN-DM](README.summarization.md) ## Citation ```bibtex @article{lewis2019bart, title = {BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer }, journal={arXiv preprint arXiv:1910.13461}, year = {2019}, } ```