# Fine-tuning BART on GLUE tasks ### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands: ```bash wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py python download_glue_data.py --data_dir glue_data --tasks all ``` ### 2) Preprocess GLUE task data (same as RoBERTa): ```bash ./examples/roberta/preprocess_GLUE_tasks.sh glue_data ``` `glue_task_name` is one of the following: `{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}` Use `ALL` for preprocessing all the glue tasks. ### 3) Fine-tuning on GLUE task: Example fine-tuning cmd for `RTE` task ```bash TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16 WARMUP_UPDATES=61 # 6 percent of the number of updates LR=1e-05 # Peak LR for polynomial LR scheduler. NUM_CLASSES=2 MAX_SENTENCES=16 # Batch size. BART_PATH=/path/to/bart/model.pt CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \ --restore-file $BART_PATH \ --batch-size $MAX_SENTENCES \ --max-tokens 4400 \ --task sentence_prediction \ --add-prev-output-tokens \ --layernorm-embedding \ --share-all-embeddings \ --share-decoder-input-output-embed \ --reset-optimizer --reset-dataloader --reset-meters \ --required-batch-size-multiple 1 \ --init-token 0 \ --arch bart_large \ --criterion sentence_prediction \ --num-classes $NUM_CLASSES \ --dropout 0.1 --attention-dropout 0.1 \ --weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \ --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ --max-epoch 10 \ --find-unused-parameters \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric; ``` For each of the GLUE task, you will need to use following cmd-line arguments: Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B ---|---|---|---|---|---|---|---|--- `--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 `--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5 `bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32 `--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799 `--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107 For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`. **Note:** a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task. b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`. ### Inference on GLUE task After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet: ```python from fairseq.models.bart import BARTModel bart = BARTModel.from_pretrained( 'checkpoints/', checkpoint_file='checkpoint_best.pt', data_name_or_path='RTE-bin' ) label_fn = lambda label: bart.task.label_dictionary.string( [label + bart.task.label_dictionary.nspecial] ) ncorrect, nsamples = 0, 0 bart.cuda() bart.eval() with open('glue_data/RTE/dev.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[1], tokens[2], tokens[3] tokens = bart.encode(sent1, sent2) prediction = bart.predict('sentence_classification_head', tokens).argmax().item() prediction_label = label_fn(prediction) ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) ```