# Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019) This page includes instructions for reproducing results from the paper [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](https://arxiv.org/abs/1902.07816). ## Download data First, follow the [instructions to download and preprocess the WMT'17 En-De dataset](../translation#prepare-wmt14en2desh). Make sure to learn a joint vocabulary by passing the `--joined-dictionary` option to `fairseq-preprocess`. ## Train a model Then we can train a mixture of experts model using the `translation_moe` task. Use the `--method` flag to choose the MoE variant; we support hard mixtures with a learned or uniform prior (`--method hMoElp` and `hMoEup`, respectively) and soft mixures (`--method sMoElp` and `sMoEup`). The model is trained with online responsibility assignment and shared parameterization. The following command will train a `hMoElp` model with `3` experts: ```bash fairseq-train --ddp-backend='legacy_ddp' \ data-bin/wmt17_en_de \ --max-update 100000 \ --task translation_moe --user-dir examples/translation_moe/translation_moe_src \ --method hMoElp --mean-pool-gating-network \ --num-experts 3 \ --arch transformer_wmt_en_de --share-all-embeddings \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \ --lr 0.0007 \ --dropout 0.1 --weight-decay 0.0 --criterion cross_entropy \ --max-tokens 3584 ``` ## Translate Once a model is trained, we can generate translations from different experts using the `--gen-expert` option. For example, to generate from expert 0: ```bash fairseq-generate data-bin/wmt17_en_de \ --path checkpoints/checkpoint_best.pt \ --beam 1 --remove-bpe \ --task translation_moe --user-dir examples/translation_moe/translation_moe_src \ --method hMoElp --mean-pool-gating-network \ --num-experts 3 \ --gen-expert 0 ``` ## Evaluate First download a tokenized version of the WMT'14 En-De test set with multiple references: ```bash wget dl.fbaipublicfiles.com/fairseq/data/wmt14-en-de.extra_refs.tok ``` Next apply BPE on the fly and run generation for each expert: ```bash BPE_CODE=examples/translation/wmt17_en_de/code for EXPERT in $(seq 0 2); do \ cat wmt14-en-de.extra_refs.tok \ | grep ^S | cut -f 2 \ | fairseq-interactive data-bin/wmt17_en_de \ --path checkpoints/checkpoint_best.pt \ --beam 1 \ --bpe subword_nmt --bpe-codes $BPE_CODE \ --buffer-size 500 --max-tokens 6000 \ --task translation_moe --user-dir examples/translation_moe/translation_moe_src \ --method hMoElp --mean-pool-gating-network \ --num-experts 3 \ --gen-expert $EXPERT ; \ done > wmt14-en-de.extra_refs.tok.gen.3experts ``` Finally use `score_moe.py` to compute pairwise BLUE and average oracle BLEU: ```bash python examples/translation_moe/score.py --sys wmt14-en-de.extra_refs.tok.gen.3experts --ref wmt14-en-de.extra_refs.tok # pairwise BLEU: 48.26 # #refs covered: 2.11 # multi-reference BLEU (leave-one-out): 59.46 ``` This matches row 3 from Table 7 in the paper. ## Citation ```bibtex @article{shen2019mixture, title = {Mixture Models for Diverse Machine Translation: Tricks of the Trade}, author = {Tianxiao Shen and Myle Ott and Michael Auli and Marc'Aurelio Ranzato}, journal = {International Conference on Machine Learning}, year = 2019, } ```