# Examples of Training scripts for Non-autoregressive Machine Translation models ### Non-autoregressive Transformer (NAT, Gu et al., 2017) Note that we need to have an additional module to perform "length prediction" (`--length-loss-factor`) before generating the whole sequence. ```bash fairseq-train \ data-bin/wmt14_en_de_distill \ --save-dir checkpoints \ --ddp-backend=legacy_ddp \ --task translation_lev \ --criterion nat_loss \ --arch nonautoregressive_transformer \ --noise full_mask \ --share-all-embeddings \ --optimizer adam --adam-betas '(0.9,0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --stop-min-lr '1e-09' --warmup-updates 10000 \ --warmup-init-lr '1e-07' --label-smoothing 0.1 \ --dropout 0.3 --weight-decay 0.01 \ --decoder-learned-pos \ --encoder-learned-pos \ --pred-length-offset \ --length-loss-factor 0.1 \ --apply-bert-init \ --log-format 'simple' --log-interval 100 \ --fixed-validation-seed 7 \ --max-tokens 8000 \ --save-interval-updates 10000 \ --max-update 300000 ``` ### Fast Structured Decoding for Sequence Models (NAT-CRF, Sun et al., 2019) Note that we implemented a low-rank appromixated CRF model by setting `--crf-lowrank-approx=32` and `--crf-beam-approx=64` as discribed in the original paper. All other settings are the same as the vanilla NAT model. ```bash fairseq-train \ data-bin/wmt14_en_de_distill \ --save-dir checkpoints \ --ddp-backend=legacy_ddp \ --task translation_lev \ --criterion nat_loss \ --arch nacrf_transformer \ --noise full_mask \ --share-all-embeddings \ --optimizer adam --adam-betas '(0.9,0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --stop-min-lr '1e-09' --warmup-updates 10000 \ --warmup-init-lr '1e-07' --label-smoothing 0.1 \ --dropout 0.3 --weight-decay 0.01 \ --decoder-learned-pos \ --encoder-learned-pos \ --pred-length-offset \ --length-loss-factor 0.1 \ --word-ins-loss-factor 0.5 \ --crf-lowrank-approx 32 \ --crf-beam-approx 64 \ --apply-bert-init \ --log-format 'simple' --log-interval 100 \ --fixed-validation-seed 7 \ --max-tokens 8000 \ --save-interval-updates 10000 \ --max-update 300000 ``` ### Non-autoregressive Transformer with Iterative Refinement (iNAT, Lee et al., 2018) Note that `--train-step` means how many iterations of refinement we used during training, and `--dae-ratio` controls the ratio of denoising auto-encoder training described in the original paper. ```bash fairseq-train \ data-bin/wmt14_en_de_distill \ --save-dir checkpoints \ --ddp-backend=legacy_ddp \ --task translation_lev \ --criterion nat_loss \ --arch iterative_nonautoregressive_transformer \ --noise full_mask \ --share-all-embeddings \ --optimizer adam --adam-betas '(0.9,0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --stop-min-lr '1e-09' --warmup-updates 10000 \ --warmup-init-lr '1e-07' --label-smoothing 0.1 \ --dropout 0.3 --weight-decay 0.01 \ --decoder-learned-pos \ --encoder-learned-pos \ --pred-length-offset \ --length-loss-factor 0.1 \ --train-step 4 \ --dae-ratio 0.5 \ --stochastic-approx \ --apply-bert-init \ --log-format 'simple' --log-interval 100 \ --fixed-validation-seed 7 \ --max-tokens 8000 \ --save-interval-updates 10000 \ --max-update 300000 ``` ### Insertion Transformer (InsT, Stern et al., 2019) Note that we need to specify the "slot-loss" (uniform or balanced tree) described in the original paper. Here we use `--label-tau` to control the temperature. ```bash fairseq-train \ data-bin/wmt14_en_de_distill \ --save-dir checkpoints \ --ddp-backend=legacy_ddp \ --task translation_lev \ --criterion nat_loss \ --arch insertion_transformer \ --noise random_delete \ --share-all-embeddings \ --optimizer adam --adam-betas '(0.9,0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --stop-min-lr '1e-09' --warmup-updates 10000 \ --warmup-init-lr '1e-07' --label-smoothing 0.1 \ --dropout 0.3 --weight-decay 0.01 \ --decoder-learned-pos \ --encoder-learned-pos \ --apply-bert-init \ --log-format 'simple' --log-interval 100 \ --fixed-validation-seed 7 \ --max-tokens 8000 \ --save-interval-updates 10000 \ --max-update 300000 ``` ### Mask Predict (CMLM, Ghazvininejad et al., 2019) ```bash fairseq-train \ data-bin/wmt14_en_de_distill \ --save-dir checkpoints \ --ddp-backend=legacy_ddp \ --task translation_lev \ --criterion nat_loss \ --arch cmlm_transformer \ --noise random_mask \ --share-all-embeddings \ --optimizer adam --adam-betas '(0.9,0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --stop-min-lr '1e-09' --warmup-updates 10000 \ --warmup-init-lr '1e-07' --label-smoothing 0.1 \ --dropout 0.3 --weight-decay 0.01 \ --decoder-learned-pos \ --encoder-learned-pos \ --apply-bert-init \ --log-format 'simple' --log-interval 100 \ --fixed-validation-seed 7 \ --max-tokens 8000 \ --save-interval-updates 10000 \ --max-update 300000 ``` ### Levenshtein Transformer (LevT, Gu et al., 2019) ```bash fairseq-train \ data-bin/wmt14_en_de_distill \ --save-dir checkpoints \ --ddp-backend=legacy_ddp \ --task translation_lev \ --criterion nat_loss \ --arch levenshtein_transformer \ --noise random_delete \ --share-all-embeddings \ --optimizer adam --adam-betas '(0.9,0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --stop-min-lr '1e-09' --warmup-updates 10000 \ --warmup-init-lr '1e-07' --label-smoothing 0.1 \ --dropout 0.3 --weight-decay 0.01 \ --decoder-learned-pos \ --encoder-learned-pos \ --apply-bert-init \ --log-format 'simple' --log-interval 100 \ --fixed-validation-seed 7 \ --max-tokens 8000 \ --save-interval-updates 10000 \ --max-update 300000 ```