# Fine-tuning details For each task (GLUE and PAWS), we perform hyperparam search for each model, and report the mean and standard deviation across 5 seeds of the best model. First, get the datasets following the instructions in [RoBERTa fine-tuning README](../roberta/README.glue.md). Alternatively, you can use [huggingface datasets](https://huggingface.co/docs/datasets/) to get the task data: ```python from datasets import load_dataset import pandas as pd from pathlib import Path key2file = { "paws": { "loc": "paws_data", "columns": ["id", "sentence1", "sentence2", "label"], "train": "train.tsv", "validation": "dev.tsv", "test": "test.tsv" } } task_data = load_dataset("paws", "labeled_final") task_config = key2file["paws"] save_path = Path(task_config["loc"]) save_path.mkdir(exist_ok=True, parents=True) for key, fl in task_config.items(): if key in ["loc", "columns"]: continue print(f"Reading {key}") columns = task_config["columns"] df = pd.DataFrame(task_data[key]) print(df.columns) df = df[columns] print(f"Got {len(df)} records") save_loc = save_path / fl print(f"Saving to : {save_loc}") df.to_csv(save_loc, sep="\t", header=None, index=None) ``` - Preprocess using RoBERTa GLUE preprocessing script, while keeping in mind the column numbers for `sentence1`, `sentence2` and `label` (which is 0,1,2 if you save the data according to the above example.) - Then, fine-tuning is performed similarly to RoBERTa (for example, in case of RTE): ```bash TOTAL_NUM_UPDATES=30875 # 10 epochs through RTE for bsz 16 WARMUP_UPDATES=1852 # 6 percent of the number of updates LR=2e-05 # Peak LR for polynomial LR scheduler. NUM_CLASSES=2 MAX_SENTENCES=16 # Batch size. SHUFFLED_ROBERTA_PATH=/path/to/shuffled_roberta/model.pt CUDA_VISIBLE_DEVICES=0 fairseq-train RTE-bin/ \ --restore-file $SHUFFLED_ROBERTA_PATH \ --max-positions 512 \ --batch-size $MAX_SENTENCES \ --max-tokens 4400 \ --task sentence_prediction \ --reset-optimizer --reset-dataloader --reset-meters \ --required-batch-size-multiple 1 \ --init-token 0 --separator-token 2 \ --arch roberta_large \ --criterion sentence_prediction \ --num-classes $NUM_CLASSES \ --dropout 0.1 --attention-dropout 0.1 \ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ --max-epoch 10 \ --find-unused-parameters \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric; ``` - `TOTAL_NUM_UPDATES` is computed based on the `--batch_size` value and the dataset size. - `WARMUP_UPDATES` is computed as 6% of `TOTAL_NUM_UPDATES` - Best hyperparam of `--lr` and `--batch_size` is reported below: ## `--lr` | | name | RTE | MRPC | SST-2 | CoLA | QQP | QNLI | MNLI | PAWS | | --: | :----------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | | 0 | original | 2e-05 | 2e-05 | 1e-05 | 2e-05 | 1e-05 | 1e-05 | 1e-05 | 2e-05 | | 1 | n_1 | 2e-05 | 1e-05 | 1e-05 | 1e-05 | 3e-05 | 1e-05 | 2e-05 | 2e-05 | | 2 | n_2 | 2e-05 | 2e-05 | 1e-05 | 1e-05 | 2e-05 | 1e-05 | 1e-05 | 3e-05 | | 3 | n_3 | 3e-05 | 1e-05 | 2e-05 | 2e-05 | 3e-05 | 1e-05 | 1e-05 | 2e-05 | | 4 | n_4 | 3e-05 | 1e-05 | 2e-05 | 2e-05 | 2e-05 | 1e-05 | 1e-05 | 2e-05 | | 5 | r512 | 1e-05 | 3e-05 | 2e-05 | 2e-05 | 3e-05 | 2e-05 | 3e-05 | 2e-05 | | 6 | rand_corpus | 2e-05 | 1e-05 | 3e-05 | 1e-05 | 3e-05 | 3e-05 | 3e-05 | 2e-05 | | 7 | rand_uniform | 2e-05 | 1e-05 | 3e-05 | 2e-05 | 3e-05 | 3e-05 | 3e-05 | 1e-05 | | 8 | rand_init | 1e-05 | 1e-05 | 3e-05 | 1e-05 | 1e-05 | 1e-05 | 2e-05 | 1e-05 | | 9 | no_pos | 1e-05 | 3e-05 | 2e-05 | 1e-05 | 1e-05 | 1e-05 | 1e-05 | 1e-05 | ## `--batch_size` | | name | RTE | MRPC | SST-2 | CoLA | QQP | QNLI | MNLI | PAWS | | --: | :----------- | --: | ---: | ----: | ---: | --: | ---: | ---: | ---: | | 0 | orig | 16 | 16 | 32 | 16 | 16 | 32 | 32 | 16 | | 1 | n_1 | 32 | 32 | 16 | 32 | 32 | 16 | 32 | 16 | | 2 | n_2 | 32 | 16 | 32 | 16 | 32 | 32 | 16 | 32 | | 3 | n_3 | 32 | 32 | 16 | 32 | 32 | 16 | 32 | 32 | | 4 | n_4 | 32 | 16 | 32 | 16 | 32 | 32 | 32 | 32 | | 5 | r512 | 32 | 16 | 16 | 32 | 32 | 16 | 16 | 16 | | 6 | rand_corpus | 16 | 16 | 16 | 16 | 32 | 16 | 16 | 32 | | 7 | rand_uniform | 16 | 32 | 16 | 16 | 32 | 16 | 16 | 16 | | 8 | rand_init | 16 | 16 | 32 | 16 | 16 | 16 | 32 | 16 | | 9 | no_pos | 16 | 32 | 16 | 16 | 32 | 16 | 16 | 16 | - Perform inference similar to RoBERTa as well: ```python from fairseq.models.roberta import RobertaModel roberta = RobertaModel.from_pretrained( 'checkpoints/', checkpoint_file='checkpoint_best.pt', data_name_or_path='PAWS-bin' ) label_fn = lambda label: roberta.task.label_dictionary.string( [label + roberta.task.label_dictionary.nspecial] ) ncorrect, nsamples = 0, 0 roberta.cuda() roberta.eval() with open('paws_data/dev.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[0], tokens[1], tokens[2] tokens = roberta.encode(sent1, sent2) prediction = roberta.predict('sentence_classification_head', tokens).argmax().item() prediction_label = label_fn(prediction) ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) ```