# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("sentence_prediction_r3f") class SentencePredictionR3F(FairseqCriterion): def __init__( self, task, eps, r3f_lambda, noise_type, classification_head_name, regression_target, ): super().__init__(task) self.eps = eps self.r3f_lambda = r3f_lambda self.noise_type = noise_type self.classification_head_name = classification_head_name self.regression_target = regression_target if self.noise_type in {"normal"}: self.noise_sampler = torch.distributions.normal.Normal( loc=0.0, scale=self.eps ) elif self.noise_type == "uniform": self.noise_sampler = torch.distributions.uniform.Uniform( low=-self.eps, high=self.eps ) else: raise Exception(f"unrecognized noise type {self.noise_type}") @staticmethod def add_args(parser): # fmt: off parser.add_argument('--eps', type=float, default=1e-5, help='noise eps') parser.add_argument('--r3f-lambda', type=float, default=1.0, help='lambda for combining logistic loss and noisy KL loss') parser.add_argument('--noise-type', type=str, default='uniform', choices=['normal', 'uniform'], help='type of noises for RXF methods') parser.add_argument('--classification-head-name', default='sentence_classification_head', help='name of the classification head to use') parser.add_argument('--regression-target', action='store_true') # fmt: on def _get_symm_kl(self, noised_logits, input_logits): return ( F.kl_div( F.log_softmax(noised_logits, dim=-1, dtype=torch.float32), F.softmax(input_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) + F.kl_div( F.log_softmax(input_logits, dim=-1, dtype=torch.float32), F.softmax(noised_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) ) / noised_logits.size(0) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.classification_head_name in model.classification_heads ), "model must provide sentence classification head for --criterion=sentence_prediction" token_embeddings = model.encoder.sentence_encoder.embed_tokens( sample["net_input"]["src_tokens"] ) input_logits, _ = model( **sample["net_input"], features_only=True, classification_head_name=self.classification_head_name, token_embeddings=token_embeddings, ) if model.training and self.noise_sampler: noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to( token_embeddings ) noised_embeddings = token_embeddings.detach().clone() + noise noised_logits, _ = model( **sample["net_input"], features_only=True, classification_head_name=self.classification_head_name, token_embeddings=noised_embeddings, ) symm_kl = self._get_symm_kl(noised_logits, input_logits) else: symm_kl = 0 targets = model.get_targets(sample, [input_logits]).view(-1) sample_size = targets.numel() if not self.regression_target: loss = F.nll_loss( F.log_softmax(input_logits, dim=-1, dtype=torch.float32), targets, reduction="sum", ) if model.training: symm_kl = symm_kl * sample_size loss = loss + self.r3f_lambda * symm_kl else: logits = input_logits.squeeze().float() targets = targets.float() loss = F.mse_loss(logits, targets, reduction="sum") logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample_size, "sample_size": sample_size, } if not self.regression_target: preds = input_logits.max(dim=1)[1] logging_output.update(ncorrect=(preds == targets).sum().item()) if model.training and self.noise_sampler: logging_output.update( symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data ) return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2), "symm_kl": symm_kl_sum / sample_size, "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) agg_output.update(accuracy=ncorrect / nsentences) if sample_size != ntokens: agg_output["nll_loss"] = loss_sum / ntokens / math.log(2) return agg_output