import os from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data import torchvision.transforms as transforms from torchvision.models.inception import inception_v3 from scipy.stats import entropy from torch.autograd import Variable from eval_utils.dataset import Dataset from eval_utils.inceptionV3 import InceptionV3 parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('--batch-size', type=int, default=64, help='Batch size to use') parser.add_argument('--dims', type=int, default=2048, choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), help=('Dimensionality of Inception features to use. ' 'By default, uses pool3 features')) parser.add_argument('-c', '--gpu', default='', type=str, help='GPU to use (leave blank for CPU only)') parser.add_argument('--path1', type=str, help='path to images') def inception_score(imgs, cuda=True, batch_size=32, resize=False, splits=1): """Computes the inception score of the generated images imgs imgs -- Torch dataset of (3xHxW) numpy images normalized in the range [-1, 1] cuda -- whether or not to run on GPU batch_size -- batch size for feeding into Inception v3 splits -- number of splits """ N = len(imgs) assert batch_size > 0 if batch_size > N: batch_size = N # Set up dtype if cuda: dtype = torch.cuda.FloatTensor else: if torch.cuda.is_available(): print("WARNING: You have a CUDA device, so you should probably set cuda=True") dtype = torch.FloatTensor # Set up dataloader dataloader = torch.utils.data.DataLoader(imgs, batch_size=batch_size) # Load inception model inception_model = inception_v3(pretrained=True, transform_input=False).type(dtype) inception_model.eval() up = nn.Upsample(size=(299, 299), mode='bilinear').type(dtype) def get_pred(x): if resize: x = up(x) x = inception_model(x) return F.softmax(x).data.cpu().numpy() # Get predictions preds = np.zeros((N, 1000)) for i, batch in enumerate(dataloader, 0): batch = batch.type(dtype) batchv = Variable(batch) batch_size_i = batch.size()[0] preds[i * batch_size:i * batch_size + batch_size_i] = get_pred(batchv) # Now compute the mean kl-div split_scores = [] for k in range(splits): part = preds[k * (N // splits): (k + 1) * (N // splits), :] py = np.mean(part, axis=0) scores = [] for i in range(part.shape[0]): pyx = part[i, :] scores.append(entropy(pyx, py)) split_scores.append(np.exp(np.mean(scores))) return np.mean(split_scores), np.std(split_scores) if __name__ == '__main__': args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu dataset = Dataset(args.path1, transforms.Compose([ transforms.Resize((299, 299)), transforms.ToTensor(), ])) mean, std = inception_score(dataset, cuda=True, batch_size=32, resize=False, splits=1) print('IS mean: ', mean) print('IS std: ', std)