[[Back]](..) # LJSpeech [LJSpeech](https://keithito.com/LJ-Speech-Dataset) is a public domain TTS corpus with around 24 hours of English speech sampled at 22.05kHz. We provide examples for building [Transformer](https://arxiv.org/abs/1809.08895) and [FastSpeech 2](https://arxiv.org/abs/2006.04558) models on this dataset. ## Data preparation Download data, create splits and generate audio manifests with ```bash python -m examples.speech_synthesis.preprocessing.get_ljspeech_audio_manifest \ --output-data-root ${AUDIO_DATA_ROOT} \ --output-manifest-root ${AUDIO_MANIFEST_ROOT} ``` Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with ```bash python -m examples.speech_synthesis.preprocessing.get_feature_manifest \ --audio-manifest-root ${AUDIO_MANIFEST_ROOT} \ --output-root ${FEATURE_MANIFEST_ROOT} \ --ipa-vocab --use-g2p ``` where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example. FastSpeech 2 additionally requires frame durations, pitch and energy as auxiliary training targets. Add `--add-fastspeech-targets` to include these fields in the feature manifests. We get frame durations either from phoneme-level force-alignment or frame-level pseudo-text unit sequence. They should be pre-computed and specified via: - `--textgrid-zip ${TEXT_GRID_ZIP_PATH}` for a ZIP file, inside which there is one [TextGrid](https://www.fon.hum.uva.nl/praat/manual/TextGrid.html) file per sample to provide force-alignment info. - `--id-to-units-tsv ${ID_TO_UNIT_TSV}` for a TSV file, where there are 2 columns for sample ID and space-delimited pseudo-text unit sequence, respectively. For your convenience, we provide pre-computed [force-alignment](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_mfa.zip) from [Montreal Forced Aligner](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) and [pseudo-text units](s3://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_hubert.tsv) from [HuBERT](https://github.com/pytorch/fairseq/tree/main/examples/hubert). You can also generate them by yourself using a different software or model. ## Training #### Transformer ```bash fairseq-train ${FEATURE_MANIFEST_ROOT} --save-dir ${SAVE_DIR} \ --config-yaml config.yaml --train-subset train --valid-subset dev \ --num-workers 4 --max-tokens 30000 --max-update 200000 \ --task text_to_speech --criterion tacotron2 --arch tts_transformer \ --clip-norm 5.0 --n-frames-per-step 4 --bce-pos-weight 5.0 \ --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \ --encoder-normalize-before --decoder-normalize-before \ --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ --seed 1 --update-freq 8 --eval-inference --best-checkpoint-metric mcd_loss ``` where `SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU. #### FastSpeech2 ```bash fairseq-train ${FEATURE_MANIFEST_ROOT} --save-dir ${SAVE_DIR} \ --config-yaml config.yaml --train-subset train --valid-subset dev \ --num-workers 4 --max-sentences 6 --max-update 200000 \ --task text_to_speech --criterion fastspeech2 --arch fastspeech2 \ --clip-norm 5.0 --n-frames-per-step 1 \ --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \ --encoder-normalize-before --decoder-normalize-before \ --optimizer adam --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ --seed 1 --update-freq 8 --eval-inference --best-checkpoint-metric mcd_loss ``` ## Inference Average the last 5 checkpoints, generate the test split spectrogram and waveform using the default Griffin-Lim vocoder: ```bash SPLIT=test CHECKPOINT_NAME=avg_last_5 CHECKPOINT_PATH=${SAVE_DIR}/checkpoint_${CHECKPOINT_NAME}.pt python scripts/average_checkpoints.py --inputs ${SAVE_DIR} \ --num-epoch-checkpoints 5 \ --output ${CHECKPOINT_PATH} python -m examples.speech_synthesis.generate_waveform ${FEATURE_MANIFEST_ROOT} \ --config-yaml config.yaml --gen-subset ${SPLIT} --task text_to_speech \ --path ${CHECKPOINT_PATH} --max-tokens 50000 --spec-bwd-max-iter 32 \ --dump-waveforms ``` which dumps files (waveform, feature, attention plot, etc.) to `${SAVE_DIR}/generate-${CHECKPOINT_NAME}-${SPLIT}`. To re-synthesize target waveforms for automatic evaluation, add `--dump-target`. ## Automatic Evaluation To start with, generate the manifest for synthetic speech, which will be taken as inputs by evaluation scripts. ```bash python -m examples.speech_synthesis.evaluation.get_eval_manifest \ --generation-root ${SAVE_DIR}/generate-${CHECKPOINT_NAME}-${SPLIT} \ --audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \ --output-path ${EVAL_OUTPUT_ROOT}/eval.tsv \ --vocoder griffin_lim --sample-rate 22050 --audio-format flac \ --use-resynthesized-target ``` Speech recognition (ASR) models usually operate at lower sample rates (e.g. 16kHz). For the WER/CER metric, you may need to resample the audios accordingly --- add `--output-sample-rate 16000` for `generate_waveform.py` and use `--sample-rate 16000` for `get_eval_manifest.py`. #### WER/CER metric We use wav2vec 2.0 ASR model as example. [Download](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec) the model checkpoint and dictionary, then compute WER/CER with ```bash python -m examples.speech_synthesis.evaluation.eval_asr \ --audio-header syn --text-header text --err-unit char --split ${SPLIT} \ --w2v-ckpt ${WAV2VEC2_CHECKPOINT_PATH} --w2v-dict-dir ${WAV2VEC2_DICT_DIR} \ --raw-manifest ${EVAL_OUTPUT_ROOT}/eval_16khz.tsv --asr-dir ${EVAL_OUTPUT_ROOT}/asr ``` #### MCD/MSD metric ```bash python -m examples.speech_synthesis.evaluation.eval_sp \ ${EVAL_OUTPUT_ROOT}/eval.tsv --mcd --msd ``` #### F0 metrics ```bash python -m examples.speech_synthesis.evaluation.eval_f0 \ ${EVAL_OUTPUT_ROOT}/eval.tsv --gpe --vde --ffe ``` ## Results | --arch | Params | Test MCD | Model | |---|---|---|---| | tts_transformer | 54M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_transformer_phn.tar) | | fastspeech2 | 41M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_fastspeech2_phn.tar) | [[Back]](..)