# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq.modules.layer_norm import LayerNorm from .adaptive_span_attention import AdaptiveSpan # Size notations: # B = batch_size, H = d_model, M = block_size, L = attn_span def _skew(X, pad_value): """shift every row 1 step to right""" # X = B x M x L B, M, L = X.size() X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1) X = X.view(B, -1) # B x ML+MM+M X = X[:, :-M] # B x ML+MM X = X.view(B, M, M + L) # B x M x L+M return X def _unskew(X): """reverse _skew operation""" # X = B x M x L+M B, M, L = X.size() L -= M X = X.view(B, -1) # B x ML+MM X = F.pad(X, (0, M)) # B x ML+MM+M X = X.view(B, M, M + L + 1) # B x M x L+M+1 X = X[:, :, :L] # B x M x L return X class SeqAttention(nn.Module): """Sequential self-attention layer. Each token will attend to its previous fixed number of steps. Note that attention doesn't include the current step itself. """ def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs): nn.Module.__init__(self) self.dropout = nn.Dropout(dropout) self.d_model = d_model # size of a single head self.attn_span = attn_span self.adaptive_span = AdaptiveSpan( attn_span=attn_span, n_head=n_head, adapt_span_layer=adapt_span_layer, **kargs ) def forward(self, query, key, value, key_pe): # query size = B x M x H # key, value sizes = B x (M+L) x H key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe) # compute attention from context # B x M (dest) x (M+L) (src) attn_cont = torch.matmul(query, key.transpose(-1, -2)) attn_cont = _unskew(attn_cont) # B x M x L # compute the effect of position embedding attn_pos = torch.matmul(query, key_pe) # B x M x L_pos attn = attn_cont + attn_pos attn = attn / math.sqrt(self.d_model) # B x M X L_pos attn = F.softmax(attn.float(), dim=-1).type_as(attn) # trim attention lengths according to the learned span attn = self.adaptive_span(attn) attn = self.dropout(attn) # B x M X L_pos attn_cont = _skew(attn, 0) # B x M X (L+M) out = torch.matmul(attn_cont, value) # B x M x H return out def get_cache_size(self): return self.adaptive_span.get_cache_size() class MultiHeadSeqAttention(nn.Module): def __init__(self, d_model, n_head, **kargs): nn.Module.__init__(self) assert d_model % n_head == 0 self.n_head = n_head self.head_dim = d_model // n_head self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs) self.proj_query = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_query.weight) self.proj_out = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_out.weight) self.proj_val = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_val.weight) self.proj_key = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_key.weight) def head_reshape(self, x): K = self.n_head D = self.head_dim x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D return x def forward(self, query, key, value, key_pe): B = query.size(0) K = self.n_head D = self.head_dim M = query.size(1) query = self.proj_query(query) query = self.head_reshape(query) value = self.proj_val(value) value = self.head_reshape(value) key = self.proj_key(key) key = self.head_reshape(key) out = self.attn(query, key, value, key_pe) # B_K x M x D out = out.view(B, K, M, D) # B x K x M x D out = out.transpose(1, 2).contiguous() # B x M x K x D out = out.view(B, M, -1) # B x M x K_D out = self.proj_out(out) return out class FeedForwardLayer(nn.Module): def __init__(self, d_model, d_inner, dropout, **kargs): nn.Module.__init__(self) self.fc1 = nn.Linear(d_model, d_inner) self.fc2 = nn.Linear(d_inner, d_model) nn.init.xavier_uniform_(self.fc1.weight) nn.init.xavier_uniform_(self.fc2.weight) self.dropout = nn.Dropout(dropout) def forward(self, h): h1 = F.relu(self.fc1(h)) h1 = self.dropout(h1) h2 = self.fc2(h1) return h2 class TransformerSeqLayer(nn.Module): def __init__(self, d_model, **kargs): nn.Module.__init__(self) self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs) self.norm1 = LayerNorm(d_model) self.ff = FeedForwardLayer(d_model=d_model, **kargs) self.norm2 = LayerNorm(d_model) def forward(self, h, h_cache, key_pe): # h = B x M x H # h_cache = B x L x H h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H attn_out = self.attn(h, h_all, h_all, key_pe) h = self.norm1(h + attn_out) # B x M x H if self.ff is not None: ff_out = self.ff(h) out = self.norm2(h + ff_out) # B x M x H else: out = h return out def get_cache_size(self): return self.attn.attn.get_cache_size() class TransformerSeq(nn.Module): def __init__( self, vocab_size, d_model, n_head, n_layer, attn_span, emb_dropout, aux_loss_scaler, adapt_span_layer, **kargs ): nn.Module.__init__(self) # token embeddings self.in_emb = nn.Embedding(vocab_size, d_model) nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5) self.out_emb = nn.Linear(d_model, vocab_size) self.aux_loss_scaler = aux_loss_scaler if emb_dropout > 0: self.emb_dropout = nn.Dropout(emb_dropout) else: self.emb_dropout = None # position embeddings self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span)) self.layers = nn.ModuleList() self.layers.extend( TransformerSeqLayer( d_model=d_model, n_head=n_head, attn_span=attn_span, adapt_span_layer=adapt_span_layer, **kargs ) for _ in range(n_layer) ) def forward(self, x, h_cache, target=None): # x size = B x M block_size = x.size(1) h = self.in_emb(x) # B x M x H if self.emb_dropout is not None: h = self.emb_dropout(h) h_cache_next = [] for l, layer in enumerate(self.layers): cache_size = layer.attn.attn.get_cache_size() if cache_size > block_size: h_cache_next_l = torch.cat( [h_cache[l][:, -cache_size + block_size :, :], h], dim=1 ).detach() else: h_cache_next_l = h[:, -cache_size:, :].detach() h_cache_next.append(h_cache_next_l) h = layer(h, h_cache[l], self.key_pe) # B x M x H if self.emb_dropout is not None: h = self.emb_dropout(h) out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h) dummy_loss = None return out, h_cache_next, dummy_loss def get_aux_loss(self): loss = 0.0 for layer in self.layers: loss += layer.attn.attn.adaptive_span.get_loss() return self.aux_loss_scaler * loss def get_current_max_span(self): max_span = 0.0 for layer in self.layers: max_span = max( max_span, layer.attn.attn.adaptive_span.get_current_max_span() ) return max_span def get_current_avg_span(self): avg_span = 0.0 for layer in self.layers: avg_span += layer.attn.attn.adaptive_span.get_current_avg_span() return avg_span / len(self.layers)