# Finetuning RoBERTa on Winograd Schema Challenge (WSC) data The following instructions can be used to finetune RoBERTa on the WSC training data provided by [SuperGLUE](https://super.gluebenchmark.com/). Note that there is high variance in the results. For our GLUE/SuperGLUE submission we swept over the learning rate (1e-5, 2e-5, 3e-5), batch size (16, 32, 64) and total number of updates (500, 1000, 2000, 3000), as well as the random seed. Out of ~100 runs we chose the best 7 models and ensembled them. **Approach:** The instructions below use a slightly different loss function than what's described in the original RoBERTa arXiv paper. In particular, [Kocijan et al. (2019)](https://arxiv.org/abs/1905.06290) introduce a margin ranking loss between `(query, candidate)` pairs with tunable hyperparameters alpha and beta. This is supported in our code as well with the `--wsc-alpha` and `--wsc-beta` arguments. However, we achieved slightly better (and more robust) results on the development set by instead using a single cross entropy loss term over the log-probabilities for the query and all mined candidates. **The candidates are mined using spaCy from each input sentence in isolation, so the approach remains strictly pointwise.** This reduces the number of hyperparameters and our best model achieved 92.3% development set accuracy, compared to ~90% accuracy for the margin loss. Later versions of the RoBERTa arXiv paper will describe this updated formulation. ### 1) Download the WSC data from the SuperGLUE website: ```bash wget https://dl.fbaipublicfiles.com/glue/superglue/data/v2/WSC.zip unzip WSC.zip # we also need to copy the RoBERTa dictionary into the same directory wget -O WSC/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt ``` ### 2) Finetune over the provided training data: ```bash TOTAL_NUM_UPDATES=2000 # Total number of training steps. WARMUP_UPDATES=250 # Linearly increase LR over this many steps. LR=2e-05 # Peak LR for polynomial LR scheduler. MAX_SENTENCES=16 # Batch size per GPU. SEED=1 # Random seed. ROBERTA_PATH=/path/to/roberta/model.pt # we use the --user-dir option to load the task and criterion # from the examples/roberta/wsc directory: FAIRSEQ_PATH=/path/to/fairseq FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train WSC/ \ --restore-file $ROBERTA_PATH \ --reset-optimizer --reset-dataloader --reset-meters \ --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ --valid-subset val \ --fp16 --ddp-backend legacy_ddp \ --user-dir $FAIRSEQ_USER_DIR \ --task wsc --criterion wsc --wsc-cross-entropy \ --arch roberta_large --bpe gpt2 --max-positions 512 \ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \ --lr-scheduler polynomial_decay --lr $LR \ --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \ --batch-size $MAX_SENTENCES \ --max-update $TOTAL_NUM_UPDATES \ --log-format simple --log-interval 100 \ --seed $SEED ``` The above command assumes training on 4 GPUs, but you can achieve the same results on a single GPU by adding `--update-freq=4`. ### 3) Evaluate ```python from fairseq.models.roberta import RobertaModel from examples.roberta.wsc import wsc_utils # also loads WSC task and criterion roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'WSC/') roberta.cuda() nsamples, ncorrect = 0, 0 for sentence, label in wsc_utils.jsonl_iterator('WSC/val.jsonl', eval=True): pred = roberta.disambiguate_pronoun(sentence) nsamples += 1 if pred == label: ncorrect += 1 print('Accuracy: ' + str(ncorrect / float(nsamples))) # Accuracy: 0.9230769230769231 ``` ## RoBERTa training on WinoGrande dataset We have also provided `winogrande` task and criterion for finetuning on the [WinoGrande](https://mosaic.allenai.org/projects/winogrande) like datasets where there are always two candidates and one is correct. It's more efficient implementation for such subcases. ```bash TOTAL_NUM_UPDATES=23750 # Total number of training steps. WARMUP_UPDATES=2375 # Linearly increase LR over this many steps. LR=1e-05 # Peak LR for polynomial LR scheduler. MAX_SENTENCES=32 # Batch size per GPU. SEED=1 # Random seed. ROBERTA_PATH=/path/to/roberta/model.pt # we use the --user-dir option to load the task and criterion # from the examples/roberta/wsc directory: FAIRSEQ_PATH=/path/to/fairseq FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc cd fairseq CUDA_VISIBLE_DEVICES=0 fairseq-train winogrande_1.0/ \ --restore-file $ROBERTA_PATH \ --reset-optimizer --reset-dataloader --reset-meters \ --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ --valid-subset val \ --fp16 --ddp-backend legacy_ddp \ --user-dir $FAIRSEQ_USER_DIR \ --task winogrande --criterion winogrande \ --wsc-margin-alpha 5.0 --wsc-margin-beta 0.4 \ --arch roberta_large --bpe gpt2 --max-positions 512 \ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \ --lr-scheduler polynomial_decay --lr $LR \ --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \ --batch-size $MAX_SENTENCES \ --max-update $TOTAL_NUM_UPDATES \ --log-format simple --log-interval 100 ```