OFA-OCR / app.py
JustinLin610's picture
update
08374eb
raw
history blame
6.86 kB
import os
os.system('cd fairseq;'
'pip install --use-feature=in-tree-build ./; cd ..')
os.system('ls -l')
os.system('cd EasyOCRLite;'
'pip install --use-feature=in-tree-build ./; cd ..')
os.system('ls -l')
import torch
import numpy as np
from fairseq import utils, tasks
from fairseq import checkpoint_utils
from utils.eval_utils import eval_step
from data.mm_data.ocr_dataset import ocr_resize
from tasks.mm_tasks.ocr import OcrTask
from PIL import Image, ImageDraw
from torchvision import transforms
from typing import List, Tuple
import cv2
from easyocrlite import ReaderLite
import gradio as gr
# Register refcoco task
tasks.register_task('ocr', OcrTask)
os.system('wget http://xc-models.oss-cn-zhangjiakou.aliyuncs.com/ofa/chinese/ocr/general/checkpoint_last.pt; '
'mkdir -p checkpoints; mv checkpoint_last.pt checkpoints/ocr.pt')
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
Rect = Tuple[int, int, int, int]
FourPoint = Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int], Tuple[int, int]]
def four_point_transform(image: np.ndarray, rect: FourPoint) -> np.ndarray:
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array(
[[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]],
dtype="float32",
)
# compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
def get_images(image_path: str, reader: ReaderLite, **kwargs):
results = reader.process(image_path, **kwargs)
return results
def draw_boxes(image, bounds, color='red', width=2):
draw = ImageDraw.Draw(image)
for bound in bounds:
p0, p1, p2, p3 = bound
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
return image
def encode_text(task, text, length=None, append_bos=False, append_eos=False):
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
s = task.tgt_dict.encode_line(
line=task.bpe.encode(text),
add_if_not_exist=False,
append_eos=False
).long()
if length is not None:
s = s[:length]
if append_bos:
s = torch.cat([bos_item, s])
if append_eos:
s = torch.cat([s, eos_item])
return s
def patch_resize_transform(patch_image_size=480, is_document=False):
_patch_resize_transform = transforms.Compose(
[
lambda image: ocr_resize(
image, patch_image_size, is_document=is_document
),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
]
)
return _patch_resize_transform
# Construct input for caption task
def construct_sample(task, image: Image, patch_image_size=480):
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
patch_image = patch_resize_transform(patch_image_size)(image).unsqueeze(0)
patch_mask = torch.tensor([True])
src_text = encode_text(task, "图片上的文字是什么?", append_bos=True, append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_images": patch_image,
"patch_masks": patch_mask,
},
"target": None
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def ocr(ckpt, img, out_img):
reader = ReaderLite()
overrides={"eval_cider":False, "beam":8, "max_len_b":128, "patch_image_size":480, "orig_patch_image_size":224, "no_repeat_ngram_size":0, "seed":7}
models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(ckpt),
arg_overrides=overrides
)
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
orig_image = Image.open(img)
results = get_images(img, reader)
box_list, image_list = zip(*results)
draw_boxes(orig_image, box_list)
orig_image.save(out_img)
ocr_result = []
for box, image in zip(box_list, image_list):
image = Image.fromarray(image)
sample = construct_sample(task, image, cfg.task.patch_image_size)
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
with torch.no_grad():
result, scores = eval_step(task, generator, models, sample)
ocr_result.append(result[0]['ocr'].replace(' ', ''))
result = '\n'.join(ocr_result)
return result
title = "OFA-OCR"
description = "Gradio Demo for OFA-OCR. Upload your own image or click any one of the examples, and click " \
"\"Submit\" and then wait for the generated OCR result. "
article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \
"Repo</a></p> "
examples = [['EasyOCRLite/pics/lihe.png'], ['EasyOCRLite/pics/chinese.jpg'], ['EasyOCRLite/pics/paibian.jpeg'], \
['EasyOCRLite/pics/shupai.png'], ['EasyOCRLite/pics/zuowen.jpg']]
io = gr.Interface(fn=ocr, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Textbox(label="Caption"),
title=title, description=description, article=article, examples=examples,
allow_flagging=False, allow_screenshot=False)
io.launch(cache_examples=True)