# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import contextlib import copy import importlib import logging import os import sys import warnings from itertools import accumulate from typing import Callable, Dict, List, Optional, TYPE_CHECKING import torch import torch.nn.functional as F from torch import Tensor import collections if TYPE_CHECKING: from fairseq.modules.multihead_attention import MultiheadAttention try: from amp_C import multi_tensor_l2norm multi_tensor_l2norm_available = True except ImportError: multi_tensor_l2norm_available = False try: import torch_xla.core.xla_model as xm except ImportError: xm = None logger = logging.getLogger(__name__) MANIFOLD_PATH_SEP = "|" class FileContentsAction(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(FileContentsAction, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): from fairseq.file_io import PathManager if PathManager.isfile(values): with PathManager.open(values) as f: argument = f.read().strip() else: argument = values setattr(namespace, self.dest, argument) def split_paths(paths: str, separator=os.pathsep) -> List[str]: return ( paths.split(separator) if "://" not in paths else paths.split(MANIFOLD_PATH_SEP) ) def load_ensemble_for_inference(filenames, task, model_arg_overrides=None): from fairseq import checkpoint_utils deprecation_warning( "utils.load_ensemble_for_inference is deprecated. " "Please use checkpoint_utils.load_model_ensemble instead." ) return checkpoint_utils.load_model_ensemble( filenames, arg_overrides=model_arg_overrides, task=task ) def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, collections.OrderedDict): # OrderedDict has attributes that needs to be preserved od = collections.OrderedDict((key, _apply(value)) for key, value in x.items()) od.__dict__ = x.__dict__ return od elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) def move_to_cuda(sample, device=None): device = device or torch.cuda.current_device() def _move_to_cuda(tensor): # non_blocking is ignored if tensor is not pinned, so we can always set # to True (see github.com/PyTorchLightning/pytorch-lightning/issues/620) return tensor.to(device=device, non_blocking=True) return apply_to_sample(_move_to_cuda, sample) def move_to_cpu(sample): def _move_to_cpu(tensor): # PyTorch has poor support for half tensors (float16) on CPU. # Move any such tensors to float32. if tensor.dtype in {torch.bfloat16, torch.float16}: tensor = tensor.to(dtype=torch.float32) return tensor.cpu() return apply_to_sample(_move_to_cpu, sample) def move_to_tpu(sample): import torch_xla.core.xla_model as xm device = xm.xla_device() def _move_to_tpu(tensor): return tensor.to(device) return apply_to_sample(_move_to_tpu, sample) def get_incremental_state( module: "MultiheadAttention", incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" return module.get_incremental_state(incremental_state, key) def set_incremental_state( module: "MultiheadAttention", incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: result = module.set_incremental_state(incremental_state, key, value) if result is not None: incremental_state = result return incremental_state def load_align_dict(replace_unk): if replace_unk is None: align_dict = None elif isinstance(replace_unk, str) and len(replace_unk) > 0: # Load alignment dictionary for unknown word replacement if it was passed as an argument. align_dict = {} with open(replace_unk, "r") as f: for line in f: cols = line.split() align_dict[cols[0]] = cols[1] else: # No alignment dictionary provided but we still want to perform unknown word replacement by copying the # original source word. align_dict = {} return align_dict def print_embed_overlap(embed_dict, vocab_dict): embed_keys = set(embed_dict.keys()) vocab_keys = set(vocab_dict.symbols) overlap = len(embed_keys & vocab_keys) logger.info("found {}/{} types in embedding file".format(overlap, len(vocab_dict))) def parse_embedding(embed_path): """Parse embedding text file into a dictionary of word and embedding tensors. The first line can have vocabulary size and dimension. The following lines should contain word and embedding separated by spaces. Example: 2 5 the -0.0230 -0.0264 0.0287 0.0171 0.1403 at -0.0395 -0.1286 0.0275 0.0254 -0.0932 """ embed_dict = {} with open(embed_path) as f_embed: next(f_embed) # skip header for line in f_embed: pieces = line.rstrip().split(" ") embed_dict[pieces[0]] = torch.Tensor( [float(weight) for weight in pieces[1:]] ) return embed_dict def load_embedding(embed_dict, vocab, embedding): for idx in range(len(vocab)): token = vocab[idx] if token in embed_dict: embedding.weight.data[idx] = embed_dict[token] return embedding def replace_unk(hypo_str, src_str, alignment, align_dict, unk): from fairseq import tokenizer # Tokens are strings here hypo_tokens = tokenizer.tokenize_line(hypo_str) # TODO: Very rare cases where the replacement is '' should be handled gracefully src_tokens = tokenizer.tokenize_line(src_str) + [""] for i, ht in enumerate(hypo_tokens): if ht == unk: src_token = src_tokens[alignment[i]] # Either take the corresponding value in the aligned dictionary or just copy the original value. hypo_tokens[i] = align_dict.get(src_token, src_token) return " ".join(hypo_tokens) def post_process_prediction( hypo_tokens, src_str, alignment, align_dict, tgt_dict, remove_bpe=None, extra_symbols_to_ignore=None, ): hypo_str = tgt_dict.string( hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore ) if align_dict is not None: hypo_str = replace_unk( hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string() ) if align_dict is not None or remove_bpe is not None: # Convert back to tokens for evaluating with unk replacement or without BPE # Note that the dictionary can be modified inside the method. hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True) return hypo_tokens, hypo_str, alignment def make_positions(tensor, padding_idx: int, onnx_trace: bool = False): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx def strip_pad(tensor, pad): return tensor[tensor.ne(pad)] def buffered_arange(max): if not hasattr(buffered_arange, "buf"): buffered_arange.buf = torch.LongTensor() if max > buffered_arange.buf.numel(): buffered_arange.buf.resize_(max) torch.arange(max, out=buffered_arange.buf) return buffered_arange.buf[:max] def convert_padding_direction( src_tokens, padding_idx, right_to_left: bool = False, left_to_right: bool = False ): assert right_to_left ^ left_to_right pad_mask = src_tokens.eq(padding_idx) if not pad_mask.any(): # no padding, return early return src_tokens if left_to_right and not pad_mask[:, 0].any(): # already right padded return src_tokens if right_to_left and not pad_mask[:, -1].any(): # already left padded return src_tokens max_len = src_tokens.size(1) buffered = torch.empty(0).long() if max_len > 0: torch.arange(max_len, out=buffered) range = buffered.type_as(src_tokens).expand_as(src_tokens) num_pads = pad_mask.long().sum(dim=1, keepdim=True) if right_to_left: index = torch.remainder(range - num_pads, max_len) else: index = torch.remainder(range + num_pads, max_len) return src_tokens.gather(1, index) def item(tensor): # tpu-comment: making this a no-op for xla devices. if torch.is_tensor(tensor) and tensor.device.type == "xla": return tensor.detach() if hasattr(tensor, "item"): return tensor.item() if hasattr(tensor, "__getitem__"): return tensor[0] return tensor def multi_tensor_total_norm(grads, chunk_size=2048 * 32) -> torch.Tensor: per_device_grads = {} norms = [] for grad in grads: device = grad.device cur_device_grads = per_device_grads.get(device) if cur_device_grads is None: cur_device_grads = [] per_device_grads[device] = cur_device_grads cur_device_grads.append(grad) for device in per_device_grads.keys(): cur_device_grads = per_device_grads[device] if device.type == "cuda": # TODO(msb) return has_inf has_inf = torch.zeros((1, 1), dtype=torch.int, device=device) with torch.cuda.device(device): norm = multi_tensor_l2norm( chunk_size, has_inf, [cur_device_grads], False ) norms.append(norm[0].to(torch.cuda.current_device())) else: norms += [torch.norm(g, p=2, dtype=torch.float32) for g in cur_device_grads] total_norm = torch.norm(torch.stack(norms)) return total_norm @torch.no_grad() def clip_grad_norm_(params, max_norm, aggregate_norm_fn=None) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) grads = [ p.grad.detach() for p in params if grad_exists(p) and not hasattr(p, "expert") ] expert_grads = [ p.grad.detach() for p in params if grad_exists(p) and hasattr(p, "expert") ] if len(grads) == 0: if len(params) > 0: return params[0].new_tensor(0.0) else: return torch.tensor(0.0) if len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: if torch.cuda.is_available(): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) device = torch.cuda.current_device() elif grads[0].device.type == "xla": device = grads[0].device else: device = torch.device("cpu") total_norm = torch.norm( torch.stack( [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] ) ) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + expert_grads: g.mul_(clip_coef) return total_norm def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def _match_types(arg1, arg2): """Convert the numerical argument to the same type as the other argument""" def upgrade(arg_number, arg_structure): if isinstance(arg_structure, tuple): return tuple([arg_number] * len(arg_structure)) elif isinstance(arg_structure, dict): arg = copy.deepcopy(arg_structure) for k in arg: arg[k] = upgrade(arg_number, arg_structure[k]) return arg else: return arg_number if isinstance(arg1, float) or isinstance(arg1, int): return upgrade(arg1, arg2), arg2 elif isinstance(arg2, float) or isinstance(arg2, int): return arg1, upgrade(arg2, arg1) return arg1, arg2 def resolve_max_positions(*args): """Resolve max position constraints from multiple sources.""" def map_value_update(d1, d2): updated_value = copy.deepcopy(d1) for key in d2: if key not in updated_value: updated_value[key] = d2[key] else: updated_value[key] = min(d1[key], d2[key]) return updated_value def nullsafe_min(l): minim = None for item in l: if minim is None: minim = item elif item is not None and item < minim: minim = item return minim max_positions = None for arg in args: if max_positions is None: max_positions = arg elif arg is not None: max_positions, arg = _match_types(max_positions, arg) if isinstance(arg, float) or isinstance(arg, int): max_positions = min(max_positions, arg) elif isinstance(arg, dict): max_positions = map_value_update(max_positions, arg) else: max_positions = tuple(map(nullsafe_min, zip(max_positions, arg))) return max_positions def import_user_module(args): module_path = getattr(args, "user_dir", None) if module_path is not None: module_path = os.path.abspath(args.user_dir) if not os.path.exists(module_path) and not os.path.isfile( os.path.dirname(module_path) ): fairseq_rel_path = os.path.join(os.path.dirname(__file__), args.user_dir) if os.path.exists(fairseq_rel_path): module_path = fairseq_rel_path else: fairseq_rel_path = os.path.join( os.path.dirname(__file__), "..", args.user_dir ) if os.path.exists(fairseq_rel_path): module_path = fairseq_rel_path else: raise FileNotFoundError(module_path) # ensure that user modules are only imported once import_user_module.memo = getattr(import_user_module, "memo", set()) if module_path not in import_user_module.memo: import_user_module.memo.add(module_path) module_parent, module_name = os.path.split(module_path) if module_name not in sys.modules: sys.path.insert(0, module_parent) importlib.import_module(module_name) tasks_path = os.path.join(module_path, "tasks") if os.path.exists(tasks_path): from fairseq.tasks import import_tasks import_tasks(tasks_path, f"{module_name}.tasks") models_path = os.path.join(module_path, "models") if os.path.exists(models_path): from fairseq.models import import_models import_models(models_path, f"{module_name}.models") else: raise ImportError( "Failed to import --user-dir={} because the corresponding module name " "({}) is not globally unique. Please rename the directory to " "something unique and try again.".format(module_path, module_name) ) def softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def log_softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.log_softmax(x.float(), dim=dim) else: return F.log_softmax(x, dim=dim, dtype=torch.float32) def get_perplexity(loss, round=2, base=2): from fairseq.logging.meters import safe_round if loss is None: return 0.0 try: return safe_round(base ** loss, round) except OverflowError: return float("inf") def deprecation_warning(message, stacklevel=3): # don't use DeprecationWarning, since it's ignored by default warnings.warn(message, stacklevel=stacklevel) def get_activation_fn(activation: str) -> Callable: """Returns the activation function corresponding to `activation`""" from fairseq.modules import gelu, gelu_accurate if activation == "relu": return F.relu elif activation == "gelu": return gelu elif activation == "gelu_fast": deprecation_warning( "--activation-fn=gelu_fast has been renamed to gelu_accurate" ) return gelu_accurate elif activation == "gelu_accurate": return gelu_accurate elif activation == "tanh": return torch.tanh elif activation == "linear": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def get_available_activation_fns() -> List: return [ "relu", "gelu", "gelu_fast", # deprecated "gelu_accurate", "tanh", "linear", ] @contextlib.contextmanager def model_eval(model): is_training = model.training model.eval() yield model.train(is_training) def has_parameters(module): try: next(module.parameters()) return True except StopIteration: return False def get_rng_state(): state = {"torch_rng_state": torch.get_rng_state()} if xm is not None: state["xla_rng_state"] = xm.get_rng_state() if torch.cuda.is_available(): state["cuda_rng_state"] = torch.cuda.get_rng_state() return state def set_rng_state(state): torch.set_rng_state(state["torch_rng_state"]) if xm is not None: xm.set_rng_state(state["xla_rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(state["cuda_rng_state"]) class set_torch_seed(object): def __init__(self, seed): assert isinstance(seed, int) self.rng_state = get_rng_state() torch.manual_seed(seed) if xm is not None: xm.set_rng_state(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def __enter__(self): return self def __exit__(self, *exc): set_rng_state(self.rng_state) def parse_alignment(line): """ Parses a single line from the alingment file. Args: line (str): String containing the alignment of the format: - - .. -. All indices are 0 indexed. Returns: torch.IntTensor: packed alignments of shape (2 * m). """ alignments = line.strip().split() parsed_alignment = torch.IntTensor(2 * len(alignments)) for idx, alignment in enumerate(alignments): src_idx, tgt_idx = alignment.split("-") parsed_alignment[2 * idx] = int(src_idx) parsed_alignment[2 * idx + 1] = int(tgt_idx) return parsed_alignment def get_token_to_word_mapping(tokens, exclude_list): n = len(tokens) word_start = [int(token not in exclude_list) for token in tokens] word_idx = list(accumulate(word_start)) token_to_word = {i: word_idx[i] for i in range(n)} return token_to_word def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos): tgt_valid = ( ((tgt_sent != pad) & (tgt_sent != eos)).nonzero(as_tuple=False).squeeze(dim=-1) ) src_invalid = ( ((src_sent == pad) | (src_sent == eos)).nonzero(as_tuple=False).squeeze(dim=-1) ) src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad]) tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad]) alignment = [] if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent): attn_valid = attn[tgt_valid] attn_valid[:, src_invalid] = float("-inf") _, src_indices = attn_valid.max(dim=1) for tgt_idx, src_idx in zip(tgt_valid, src_indices): alignment.append( ( src_token_to_word[src_idx.item()] - 1, tgt_token_to_word[tgt_idx.item()] - 1, ) ) return alignment def extract_soft_alignment(attn, src_sent, tgt_sent, pad, eos): tgt_valid = ((tgt_sent != pad)).nonzero(as_tuple=False) src_valid = ((src_sent != pad)).nonzero(as_tuple=False).squeeze(dim=-1) alignment = [] if len(tgt_valid) != 0 and len(src_valid) != 0: attn_valid = attn[tgt_valid, src_valid] alignment = [ ["{:.6f}".format(p) for p in src_probs.tolist()] for src_probs in attn_valid ] return alignment def new_arange(x, *size): """ Return a Tensor of `size` filled with a range function on the device of x. If size is empty, using the size of the variable x. """ if len(size) == 0: size = x.size() return torch.arange(size[-1], device=x.device).expand(*size).contiguous() def get_tpu_device(): return xm.xla_device() def tpu_data_loader(itr): import torch_xla.core.xla_model as xm import torch_xla.distributed.parallel_loader as pl from fairseq.data import iterators xm.rendezvous("tpu_data_loader") # wait for all workers xm.mark_step() device = xm.xla_device() return iterators.CountingIterator( pl.ParallelLoader(itr, [device]).per_device_loader(device), start=getattr(itr, "n", 0), total=len(itr), ) def is_xla_tensor(tensor): return torch.is_tensor(tensor) and tensor.device.type == "xla" def index_put(tensor, indices, value): if is_xla_tensor(tensor): for _ in range(indices.dim(), tensor.dim()): indices = indices.unsqueeze(-1) if indices.size(-1) < tensor.size(-1): indices = indices.expand_as(tensor) tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices) else: tensor[indices] = value return tensor def xla_device_to_cpu(dat): import torch_xla.core.xla_model as xm return xm._maybe_convert_to_cpu(dat) class CudaEnvironment(object): def __init__(self): cur_device = torch.cuda.current_device() prop = torch.cuda.get_device_properties("cuda:{}".format(cur_device)) self.name = prop.name self.major = prop.major self.minor = prop.minor self.total_memory_in_GB = prop.total_memory / 1024 / 1024 / 1024 @staticmethod def pretty_print_cuda_env_list(cuda_env_list): """ Given a list of CudaEnviorments, pretty print them """ num_workers = len(cuda_env_list) center = "CUDA enviroments for all {} workers".format(num_workers) banner_len = 40 - len(center) // 2 first_line = "*" * banner_len + center + "*" * banner_len logger.info(first_line) for r, env in enumerate(cuda_env_list): logger.info( "rank {:3d}: ".format(r) + "capabilities = {:2d}.{:<2d} ; ".format(env.major, env.minor) + "total memory = {:.3f} GB ; ".format(env.total_memory_in_GB) + "name = {:40s}".format(env.name) ) logger.info(first_line) def csv_str_list(x): return x.split(",") def eval_str_list(x, type=float): if x is None: return None if isinstance(x, str): x = eval(x) try: return list(map(type, x)) except TypeError: return [type(x)] def eval_str_dict(x, type=dict): if x is None: return None if isinstance(x, str): x = eval(x) return x def eval_bool(x, default=False): if x is None: return default try: return bool(eval(x)) except TypeError: return default def reset_logging(): root = logging.getLogger() for handler in root.handlers: root.removeHandler(handler) root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper()) handler = logging.StreamHandler(sys.stdout) handler.setFormatter( logging.Formatter( fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) ) root.addHandler(handler) def safe_getattr(obj, k, default=None): """Returns obj[k] if it exists and is not None, otherwise returns default.""" from omegaconf import OmegaConf if OmegaConf.is_config(obj): return obj[k] if k in obj and obj[k] is not None else default return getattr(obj, k, default) def safe_hasattr(obj, k): """Returns True if the given key exists and is not None.""" return getattr(obj, k, None) is not None