# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("sentence_ranking") class SentenceRankingCriterion(FairseqCriterion): def __init__(self, task, ranking_head_name, save_predictions, num_classes): super().__init__(task) self.ranking_head_name = ranking_head_name if save_predictions is not None: self.prediction_h = open(save_predictions, "w") else: self.prediction_h = None self.num_classes = num_classes def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): # fmt: off parser.add_argument('--save-predictions', metavar='FILE', help='file to save predictions to') parser.add_argument('--ranking-head-name', default='sentence_classification_head', help='name of the ranking head to use') # fmt: on def forward(self, model, sample, reduce=True): """Compute ranking loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.ranking_head_name in model.classification_heads ), "model must provide sentence ranking head for --criterion=sentence_ranking" scores = [] for idx in range(self.num_classes): score, _ = model( **sample["net_input{idx}".format(idx=idx + 1)], classification_head_name=self.ranking_head_name, ) scores.append(score) logits = torch.cat(scores, dim=1) sample_size = logits.size(0) if "target" in sample: targets = model.get_targets(sample, [logits]).view(-1) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32) loss = F.nll_loss(lprobs, targets, reduction="sum") else: targets = None loss = torch.tensor(0.0, requires_grad=True) if self.prediction_h is not None: preds = logits.argmax(dim=1) for i, (id, pred) in enumerate(zip(sample["id"].tolist(), preds.tolist())): if targets is not None: label = targets[i].item() print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) else: print("{}\t{}".format(id, pred), file=self.prediction_h) logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample_size, "sample_size": sample_size, } if targets is not None: logging_output["ncorrect"] = (logits.argmax(dim=1) == targets).sum() return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) metrics.log_scalar( "accuracy", 100.0 * ncorrect / nsentences, nsentences, round=1 ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True