import string import math import json from itertools import chain import os import torch import torch.distributed as dist from data import data_utils def get_symbols_to_strip_from_output(generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.bos, generator.eos} def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x def eval_caption(task, generator, models, sample, **kwargs): transtab = str.maketrans({key: None for key in string.punctuation}) hypos = task.inference_step(generator, models, sample) results = [] for i, sample_id in enumerate(sample["id"].tolist()): detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator) results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()}) return results, None def eval_vqa_gen(task, generator, models, sample, **kwargs): if kwargs['beam_search_vqa_eval']: hypos = task.inference_step(generator, models, sample, prefix_tokens=sample['prefix_tokens']) results = [] for i, sample_id in enumerate(sample["id"].tolist()): prefix_len = sample['prefix_tokens'][i].ne(1).sum().item() detok_hypo_str = decode_fn(hypos[i][0]["tokens"][prefix_len:], task.tgt_dict, task.bpe, generator) results.append({"question_id": int(sample_id), "answer": detok_hypo_str.strip()}) scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)] return results, scores encoder_out = models[0].encoder( sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], patch_images=sample["net_input"]["patch_images"], patch_masks=sample["net_input"]["patch_masks"] ) device = sample["net_input"]["src_tokens"].device eos_item = torch.tensor([task.src_dict.eos()]) pad = task.src_dict.pad() valid_result = [] for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list): valid_size = len(valid_answers) valid_tgt_items = [ torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers ] valid_prev_items = [ torch.cat([torch.tensor(decoder_prompt), valid_answer]) for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers ] valid_constraint_mask_items = [ torch.cat( [torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0 ) for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks ] valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device) valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device) valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device) new_encoder_out = {} new_encoder_out["encoder_out"] = [ encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) ] new_encoder_out["encoder_padding_mask"] = [ encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) ] new_encoder_out["position_embeddings"] = [ encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) ] decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out) decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True) scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0) scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) scores = scores.sum(1) scores = scores.view(-1, valid_size) valid_result.append(scores) valid_result = torch.cat(valid_result, dim=-1) predicts = valid_result.argmax(1).tolist() hyps = [task.index2ans[predict_index] for predict_index in predicts] results = [{"question_id": int(id), "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)] scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] return results, scores def eval_refcoco(task, generator, models, sample, **kwargs): def _calculate_ap_score(hyps, refs, thresh=0.5): interacts = torch.cat( [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]), torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])], dim=1 ) area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1]) interacts_w = interacts[:, 2] - interacts[:, 0] interacts_h = interacts[:, 3] - interacts[:, 1] area_interacts = interacts_w * interacts_h ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6) return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float() gen_out = task.inference_step(generator, models, sample) hyps = [] for i in range(len(gen_out)): hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins) hyps = torch.stack(hyps, dim=0) hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) results = [ {"uniq_id": sample_id, "box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]} for i, sample_id in enumerate(sample["id"].tolist()) ] scores = _calculate_ap_score(hyps, sample['region_coords'].float()) return results, scores def eval_snli_ve(task, generator, models, sample, **kwargs): encoder_out = models[0].encoder( sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], patch_images=sample["net_input"]["patch_images"], patch_masks=sample["net_input"]["patch_masks"] ) device = sample["net_input"]["src_tokens"].device eos_item = torch.tensor([task.src_dict.eos()]) pad = task.src_dict.pad() valid_result = [] for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list): valid_size = len(valid_answers) valid_tgt_items = [ torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers ] valid_prev_items = [ torch.cat([torch.tensor(decoder_prompt), valid_answer]) for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers ] valid_constraint_mask_items = [ torch.cat( [torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0 ) for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks ] valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device) valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device) valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device) new_encoder_out = {} new_encoder_out["encoder_out"] = [ encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) ] new_encoder_out["encoder_padding_mask"] = [ encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) ] new_encoder_out["position_embeddings"] = [ encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) ] decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out) decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True) scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0) scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) scores = scores.sum(1) scores = scores.view(-1, valid_size) valid_result.append(scores) valid_result = torch.cat(valid_result, dim=-1) predicts = valid_result.argmax(1).tolist() hyps = [task.index2ans[predict_index] for predict_index in predicts] results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)] scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] return results, scores def eval_image_gen(task, generator, models, sample, **kwargs): hypos, _ = task.inference_image(generator, sample, models) tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() caption = task.bpe.decode(task.tgt_dict.string([token for token in tokens if token >= 4]))[ 38:].replace('/', '') text_similarity_score, indices = task.compute_text_similarity(hypos, caption, sample['net_input']['src_tokens'].device) results = [] for i, indice in enumerate(indices): results.append({"sample_id": str(sample["id"][0]), "score": text_similarity_score[i], "image": hypos[indice]}) scores = [max(text_similarity_score).item()] return results, scores def eval_glue(task, generator, models, sample, **kwargs): net_output = models[0](**sample["net_input"]) net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf) last_token_ids = sample["net_input"]["prev_output_tokens"].ne(task.src_dict.pad()).sum(1, keepdim=True) - 1 logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2))) logits = logits.squeeze(1) predicts = logits.argmax(1).tolist() hyps = [task.bpe.decode(task.src_dict[predict]).strip() for predict in predicts] results = [{"hyp": hyp, "ref": ref_dict.keys()[0]} for hyp, ref_dict in zip(hyps, sample['ref_dict'])] return results, None def eval_step(task, generator, models, sample, **kwargs): if task.cfg._name == 'caption': return eval_caption(task, generator, models, sample, **kwargs) elif task.cfg._name == 'vqa_gen': return eval_vqa_gen(task, generator, models, sample, **kwargs) elif task.cfg._name == 'refcoco': return eval_refcoco(task, generator, models, sample, **kwargs) elif task.cfg._name == 'snli_ve': return eval_snli_ve(task, generator, models, sample, **kwargs) elif task.cfg._name == 'image_gen': return eval_image_gen(task, generator, models, sample, **kwargs) elif task.cfg._name in {'cola', 'mnli', 'mrpc', 'qnli', 'qqp', 'rte', 'sst2'}: return eval_glue(task, generator, models, sample, **kwargs) else: raise NotImplementedError def merge_results(task, cfg, logger, score_cnt, score_sum, results): if task.cfg._name == 'image_gen': if cfg.distributed_training.distributed_world_size > 1: dist.all_reduce(score_sum.data) dist.all_reduce(score_cnt.data) if score_cnt.item() > 0: logger.info("score_sum: {}, score_cnt: {}, score: {}".format( score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4) )) else: gather_results = None if cfg.distributed_training.distributed_world_size > 1: gather_results = [None for _ in range(dist.get_world_size())] dist.all_gather_object(gather_results, results) dist.all_reduce(score_sum.data) dist.all_reduce(score_cnt.data) if score_cnt.item() > 0: logger.info("score_sum: {}, score_cnt: {}, score: {}".format( score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4) )) if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0: os.makedirs(cfg.common_eval.results_path, exist_ok=True) output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset)) gather_results = list(chain(*gather_results)) if gather_results is not None else results with open(output_path, 'w') as fw: json.dump(gather_results, fw)