import math import random import torch from torch import nn from torch.nn import functional as F from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu from basicsr.ops.upfirdn2d import upfirdn2d from basicsr.utils.registry import ARCH_REGISTRY class NormStyleCode(nn.Module): def forward(self, x): """Normalize the style codes. Args: x (Tensor): Style codes with shape (b, c). Returns: Tensor: Normalized tensor. """ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] # to 2D kernel, outer product # normalize k /= k.sum() return k class UpFirDnUpsample(nn.Module): """Upsample, FIR filter, and downsample (upsampole version). References: 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501 Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. factor (int): Upsampling scale factor. Default: 2. """ def __init__(self, resample_kernel, factor=2): super(UpFirDnUpsample, self).__init__() self.kernel = make_resample_kernel(resample_kernel) * (factor**2) self.factor = factor pad = self.kernel.shape[0] - factor self.pad = ((pad + 1) // 2 + factor - 1, pad // 2) def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad) return out def __repr__(self): return (f'{self.__class__.__name__}(factor={self.factor})') class UpFirDnDownsample(nn.Module): """Upsample, FIR filter, and downsample (downsampole version). Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. factor (int): Downsampling scale factor. Default: 2. """ def __init__(self, resample_kernel, factor=2): super(UpFirDnDownsample, self).__init__() self.kernel = make_resample_kernel(resample_kernel) self.factor = factor pad = self.kernel.shape[0] - factor self.pad = ((pad + 1) // 2, pad // 2) def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad) return out def __repr__(self): return (f'{self.__class__.__name__}(factor={self.factor})') class UpFirDnSmooth(nn.Module): """Upsample, FIR filter, and downsample (smooth version). Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. upsample_factor (int): Upsampling scale factor. Default: 1. downsample_factor (int): Downsampling scale factor. Default: 1. kernel_size (int): Kernel size: Default: 1. """ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): super(UpFirDnSmooth, self).__init__() self.upsample_factor = upsample_factor self.downsample_factor = downsample_factor self.kernel = make_resample_kernel(resample_kernel) if upsample_factor > 1: self.kernel = self.kernel * (upsample_factor**2) if upsample_factor > 1: pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1) self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1) elif downsample_factor > 1: pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1) self.pad = ((pad + 1) // 2, pad // 2) else: raise NotImplementedError def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) return out def __repr__(self): return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}' f', downsample_factor={self.downsample_factor})') class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError(f'Wrong activation value in EqualLinear: {activation}' "Supported ones are: ['fused_lrelu', None].") self.scale = (1 / math.sqrt(in_channels)) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' f'out_channels={self.out_channels}, bias={self.bias is not None})') class ModulatedConv2d(nn.Module): """Modulated Conv2d used in StyleGAN2. There is no bias in ModulatedConv2d. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether to demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). eps (float): A value added to the denominator for numerical stability. Default: 1e-8. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, resample_kernel=(1, 3, 3, 1), eps=1e-8): super(ModulatedConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.demodulate = demodulate self.sample_mode = sample_mode self.eps = eps if self.sample_mode == 'upsample': self.smooth = UpFirDnSmooth( resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) elif self.sample_mode == 'downsample': self.smooth = UpFirDnSmooth( resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) elif self.sample_mode is None: pass else: raise ValueError(f'Wrong sample mode {self.sample_mode}, ' "supported ones are ['upsample', 'downsample', None].") self.scale = 1 / math.sqrt(in_channels * kernel_size**2) # modulation inside each modulated conv self.modulation = EqualLinear( num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None) self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) self.padding = kernel_size // 2 def forward(self, x, style): """Forward function. Args: x (Tensor): Tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). Returns: Tensor: Modulated tensor after convolution. """ b, c, h, w = x.shape # c = c_in # weight modulation style = self.modulation(style).view(b, 1, c, 1, 1) # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) weight = self.scale * self.weight * style # (b, c_out, c_in, k, k) if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) weight = weight * demod.view(b, self.out_channels, 1, 1, 1) weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) if self.sample_mode == 'upsample': x = x.view(1, b * c, h, w) weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) out = self.smooth(out) elif self.sample_mode == 'downsample': x = self.smooth(x) x = x.view(1, b * c, *x.shape[2:4]) out = F.conv2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) else: x = x.view(1, b * c, h, w) # weight: (b*c_out, c_in, k, k), groups=b out = F.conv2d(x, weight, padding=self.padding, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) return out def __repr__(self): return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' f'out_channels={self.out_channels}, ' f'kernel_size={self.kernel_size}, ' f'demodulate={self.demodulate}, sample_mode={self.sample_mode})') class StyleConv(nn.Module): """Style conv. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, resample_kernel=(1, 3, 3, 1)): super(StyleConv, self).__init__() self.modulated_conv = ModulatedConv2d( in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode, resample_kernel=resample_kernel) self.weight = nn.Parameter(torch.zeros(1)) # for noise injection self.activate = FusedLeakyReLU(out_channels) def forward(self, x, style, noise=None): # modulate out = self.modulated_conv(x, style) # noise injection if noise is None: b, _, h, w = out.shape noise = out.new_empty(b, 1, h, w).normal_() out = out + self.weight * noise # activation (with bias) out = self.activate(out) return out class ToRGB(nn.Module): """To RGB from features. Args: in_channels (int): Channel number of input. num_style_feat (int): Channel number of style features. upsample (bool): Whether to upsample. Default: True. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). """ def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)): super(ToRGB, self).__init__() if upsample: self.upsample = UpFirDnUpsample(resample_kernel, factor=2) else: self.upsample = None self.modulated_conv = ModulatedConv2d( in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, x, style, skip=None): """Forward function. Args: x (Tensor): Feature tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). skip (Tensor): Base/skip tensor. Default: None. Returns: Tensor: RGB images. """ out = self.modulated_conv(x, style) out = out + self.bias if skip is not None: if self.upsample: skip = self.upsample(skip) out = out + skip return out class ConstantInput(nn.Module): """Constant input. Args: num_channel (int): Channel number of constant input. size (int): Spatial size of constant input. """ def __init__(self, num_channel, size): super(ConstantInput, self).__init__() self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) def forward(self, batch): out = self.weight.repeat(batch, 1, 1, 1) return out @ARCH_REGISTRY.register() class StyleGAN2Generator(nn.Module): """StyleGAN2 Generator. Args: out_size (int): The spatial size of outputs. num_style_feat (int): Channel number of style features. Default: 512. num_mlp (int): Layer number of MLP style layers. Default: 8. channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. narrow (float): Narrow ratio for channels. Default: 1.0. """ def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), lr_mlp=0.01, narrow=1): super(StyleGAN2Generator, self).__init__() # Style MLP layers self.num_style_feat = num_style_feat style_mlp_layers = [NormStyleCode()] for i in range(num_mlp): style_mlp_layers.append( EqualLinear( num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp, activation='fused_lrelu')) self.style_mlp = nn.Sequential(*style_mlp_layers) channels = { '4': int(512 * narrow), '8': int(512 * narrow), '16': int(512 * narrow), '32': int(512 * narrow), '64': int(256 * channel_multiplier * narrow), '128': int(128 * channel_multiplier * narrow), '256': int(64 * channel_multiplier * narrow), '512': int(32 * channel_multiplier * narrow), '1024': int(16 * channel_multiplier * narrow) } self.channels = channels self.constant_input = ConstantInput(channels['4'], size=4) self.style_conv1 = StyleConv( channels['4'], channels['4'], kernel_size=3, num_style_feat=num_style_feat, demodulate=True, sample_mode=None, resample_kernel=resample_kernel) self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel) self.log_size = int(math.log(out_size, 2)) self.num_layers = (self.log_size - 2) * 2 + 1 self.num_latent = self.log_size * 2 - 2 self.style_convs = nn.ModuleList() self.to_rgbs = nn.ModuleList() self.noises = nn.Module() in_channels = channels['4'] # noise for layer_idx in range(self.num_layers): resolution = 2**((layer_idx + 5) // 2) shape = [1, 1, resolution, resolution] self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape)) # style convs and to_rgbs for i in range(3, self.log_size + 1): out_channels = channels[f'{2**i}'] self.style_convs.append( StyleConv( in_channels, out_channels, kernel_size=3, num_style_feat=num_style_feat, demodulate=True, sample_mode='upsample', resample_kernel=resample_kernel, )) self.style_convs.append( StyleConv( out_channels, out_channels, kernel_size=3, num_style_feat=num_style_feat, demodulate=True, sample_mode=None, resample_kernel=resample_kernel)) self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel)) in_channels = out_channels def make_noise(self): """Make noise for noise injection.""" device = self.constant_input.weight.device noises = [torch.randn(1, 1, 4, 4, device=device)] for i in range(3, self.log_size + 1): for _ in range(2): noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) return noises def get_latent(self, x): return self.style_mlp(x) def mean_latent(self, num_latent): latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device) latent = self.style_mlp(latent_in).mean(0, keepdim=True) return latent def forward(self, styles, input_is_latent=False, noise=None, randomize_noise=True, truncation=1, truncation_latent=None, inject_index=None, return_latents=False): """Forward function for StyleGAN2Generator. Args: styles (list[Tensor]): Sample codes of styles. input_is_latent (bool): Whether input is latent style. Default: False. noise (Tensor | None): Input noise or None. Default: None. randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. truncation (float): TODO. Default: 1. truncation_latent (Tensor | None): TODO. Default: None. inject_index (int | None): The injection index for mixing noise. Default: None. return_latents (bool): Whether to return style latents. Default: False. """ # style codes -> latents with Style MLP layer if not input_is_latent: styles = [self.style_mlp(s) for s in styles] # noises if noise is None: if randomize_noise: noise = [None] * self.num_layers # for each style conv layer else: # use the stored noise noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)] # style truncation if truncation < 1: style_truncation = [] for style in styles: style_truncation.append(truncation_latent + truncation * (style - truncation_latent)) styles = style_truncation # get style latent with injection if len(styles) == 1: inject_index = self.num_latent if styles[0].ndim < 3: # repeat latent code for all the layers latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) else: # used for encoder with different latent code for each layer latent = styles[0] elif len(styles) == 2: # mixing noises if inject_index is None: inject_index = random.randint(1, self.num_latent - 1) latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) latent = torch.cat([latent1, latent2], 1) # main generation out = self.constant_input(latent.shape[0]) out = self.style_conv1(out, latent[:, 0], noise=noise[0]) skip = self.to_rgb1(out, latent[:, 1]) i = 1 for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2], noise[2::2], self.to_rgbs): out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) i += 2 image = skip if return_latents: return image, latent else: return image, None class ScaledLeakyReLU(nn.Module): """Scaled LeakyReLU. Args: negative_slope (float): Negative slope. Default: 0.2. """ def __init__(self, negative_slope=0.2): super(ScaledLeakyReLU, self).__init__() self.negative_slope = negative_slope def forward(self, x): out = F.leaky_relu(x, negative_slope=self.negative_slope) return out * math.sqrt(2) class EqualConv2d(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. stride (int): Stride of the convolution. Default: 1 padding (int): Zero-padding added to both sides of the input. Default: 0. bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0): super(EqualConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.scale = 1 / math.sqrt(in_channels * kernel_size**2) self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): out = F.conv2d( x, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) return out def __repr__(self): return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' f'out_channels={self.out_channels}, ' f'kernel_size={self.kernel_size},' f' stride={self.stride}, padding={self.padding}, ' f'bias={self.bias is not None})') class ConvLayer(nn.Sequential): """Conv Layer used in StyleGAN2 Discriminator. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Kernel size. downsample (bool): Whether downsample by a factor of 2. Default: False. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). bias (bool): Whether with bias. Default: True. activate (bool): Whether use activateion. Default: True. """ def __init__(self, in_channels, out_channels, kernel_size, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True): layers = [] # downsample if downsample: layers.append( UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 # conv layers.append( EqualConv2d( in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias and not activate)) # activation if activate: if bias: layers.append(FusedLeakyReLU(out_channels)) else: layers.append(ScaledLeakyReLU(0.2)) super(ConvLayer, self).__init__(*layers) class ResBlock(nn.Module): """Residual block used in StyleGAN2 Discriminator. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). """ def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)): super(ResBlock, self).__init__() self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) self.conv2 = ConvLayer( in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True) self.skip = ConvLayer( in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False) def forward(self, x): out = self.conv1(x) out = self.conv2(out) skip = self.skip(x) out = (out + skip) / math.sqrt(2) return out @ARCH_REGISTRY.register() class StyleGAN2Discriminator(nn.Module): """StyleGAN2 Discriminator. Args: out_size (int): The spatial size of outputs. channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). stddev_group (int): For group stddev statistics. Default: 4. narrow (float): Narrow ratio for channels. Default: 1.0. """ def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1): super(StyleGAN2Discriminator, self).__init__() channels = { '4': int(512 * narrow), '8': int(512 * narrow), '16': int(512 * narrow), '32': int(512 * narrow), '64': int(256 * channel_multiplier * narrow), '128': int(128 * channel_multiplier * narrow), '256': int(64 * channel_multiplier * narrow), '512': int(32 * channel_multiplier * narrow), '1024': int(16 * channel_multiplier * narrow) } log_size = int(math.log(out_size, 2)) conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)] in_channels = channels[f'{out_size}'] for i in range(log_size, 2, -1): out_channels = channels[f'{2**(i - 1)}'] conv_body.append(ResBlock(in_channels, out_channels, resample_kernel)) in_channels = out_channels self.conv_body = nn.Sequential(*conv_body) self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True) self.final_linear = nn.Sequential( EqualLinear( channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'), EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None), ) self.stddev_group = stddev_group self.stddev_feat = 1 def forward(self, x): out = self.conv_body(x) b, c, h, w = out.shape # concatenate a group stddev statistics to out group = min(b, self.stddev_group) # Minibatch must be divisible by (or smaller than) group_size stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w) stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) stddev = stddev.repeat(group, 1, h, w) out = torch.cat([out, stddev], 1) out = self.final_conv(out) out = out.view(b, -1) out = self.final_linear(out) return out