import torch import torch.nn as nn import torch.nn.functional as F from .resnet import ResNet18 class ConvBNReLU(nn.Module): def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1): super(ConvBNReLU, self).__init__() self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False) self.bn = nn.BatchNorm2d(out_chan) def forward(self, x): x = self.conv(x) x = F.relu(self.bn(x)) return x class BiSeNetOutput(nn.Module): def __init__(self, in_chan, mid_chan, num_class): super(BiSeNetOutput, self).__init__() self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False) def forward(self, x): feat = self.conv(x) out = self.conv_out(feat) return out, feat class AttentionRefinementModule(nn.Module): def __init__(self, in_chan, out_chan): super(AttentionRefinementModule, self).__init__() self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False) self.bn_atten = nn.BatchNorm2d(out_chan) self.sigmoid_atten = nn.Sigmoid() def forward(self, x): feat = self.conv(x) atten = F.avg_pool2d(feat, feat.size()[2:]) atten = self.conv_atten(atten) atten = self.bn_atten(atten) atten = self.sigmoid_atten(atten) out = torch.mul(feat, atten) return out class ContextPath(nn.Module): def __init__(self): super(ContextPath, self).__init__() self.resnet = ResNet18() self.arm16 = AttentionRefinementModule(256, 128) self.arm32 = AttentionRefinementModule(512, 128) self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) def forward(self, x): feat8, feat16, feat32 = self.resnet(x) h8, w8 = feat8.size()[2:] h16, w16 = feat16.size()[2:] h32, w32 = feat32.size()[2:] avg = F.avg_pool2d(feat32, feat32.size()[2:]) avg = self.conv_avg(avg) avg_up = F.interpolate(avg, (h32, w32), mode='nearest') feat32_arm = self.arm32(feat32) feat32_sum = feat32_arm + avg_up feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest') feat32_up = self.conv_head32(feat32_up) feat16_arm = self.arm16(feat16) feat16_sum = feat16_arm + feat32_up feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest') feat16_up = self.conv_head16(feat16_up) return feat8, feat16_up, feat32_up # x8, x8, x16 class FeatureFusionModule(nn.Module): def __init__(self, in_chan, out_chan): super(FeatureFusionModule, self).__init__() self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False) self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False) self.relu = nn.ReLU(inplace=True) self.sigmoid = nn.Sigmoid() def forward(self, fsp, fcp): fcat = torch.cat([fsp, fcp], dim=1) feat = self.convblk(fcat) atten = F.avg_pool2d(feat, feat.size()[2:]) atten = self.conv1(atten) atten = self.relu(atten) atten = self.conv2(atten) atten = self.sigmoid(atten) feat_atten = torch.mul(feat, atten) feat_out = feat_atten + feat return feat_out class BiSeNet(nn.Module): def __init__(self, num_class): super(BiSeNet, self).__init__() self.cp = ContextPath() self.ffm = FeatureFusionModule(256, 256) self.conv_out = BiSeNetOutput(256, 256, num_class) self.conv_out16 = BiSeNetOutput(128, 64, num_class) self.conv_out32 = BiSeNetOutput(128, 64, num_class) def forward(self, x, return_feat=False): h, w = x.size()[2:] feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature feat_sp = feat_res8 # replace spatial path feature with res3b1 feature feat_fuse = self.ffm(feat_sp, feat_cp8) out, feat = self.conv_out(feat_fuse) out16, feat16 = self.conv_out16(feat_cp8) out32, feat32 = self.conv_out32(feat_cp16) out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True) out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True) out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True) if return_feat: feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True) feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True) feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True) return out, out16, out32, feat, feat16, feat32 else: return out, out16, out32