#!/usr/bin/env python3 from __future__ import annotations import argparse import rerun as rr from datasets import load_dataset from PIL import Image from tqdm import tqdm def log_dataset_to_rerun(dataset) -> None: # Special time-like columns TIME_LIKE = {"index", "frame_id", "timestamp"} # Ignore these columns IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"} num_rows = len(dataset) for row_nr in tqdm(range(num_rows)): row = dataset[row_nr] # Handle time-like columns first, since they set a state (time is an index in Rerun): for column_name in TIME_LIKE: if column_name in row: cell = row[column_name] if isinstance(cell, int): rr.set_time_sequence(column_name, cell) elif isinstance(cell, float): rr.set_time_seconds(column_name, cell) # assume seconds else: print(f"Unknown time-like column {column_name} with value {cell}") # Now log actual data columns for column_name in dataset.column_names: if column_name in TIME_LIKE or column_name in IGNORE: continue cell = row[column_name] if isinstance(cell, Image.Image): rr.log(column_name, rr.Image(cell)) elif isinstance(cell, list): rr.log(column_name, rr.BarChart(cell)) elif isinstance(cell, float) or isinstance(cell, int): rr.log(column_name, rr.Scalar(cell)) else: # TODO(emilk): check if it is a tensor and then log it using rr.Tensor rr.log(column_name, rr.TextDocument(str(cell))) def main(): # Define the available datasets available_datasets = [ "lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_insertion_scripted", "lerobot/aloha_sim_transfer_cube_human", "lerobot/aloha_sim_transfer_cube_scripted", "lerobot/pusht", "lerobot/xarm_lift_medium", ] # Create the parser parser = argparse.ArgumentParser(description="Log a HuggingFace dataset to Rerun.") parser.add_argument("--dataset", choices=available_datasets, default="pusht", help="The name of the dataset to load") parser.add_argument("--episode-id", default=1, help="Which episode to select") # Parse the arguments args = parser.parse_args() print("Loading dataset…") dataset = load_dataset(args.dataset, split="train") print("Selecting episode {args.episode_id}…") ds_subset = dataset.filter(lambda frame: frame["episode_id"] == args.episode_id) print("Starting Rerun…") rr.init("rerun_example_lerobot", spawn=True) print("Logging to Rerun…") log_dataset_to_rerun(ds_subset) if __name__ == "__main__": main()