import os import random import shutil import tempfile import zipfile import gradio as gr from huggingface_hub import HfApi from pdf2image import convert_from_path from PyPDF2 import PdfReader def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()): if not os.path.exists(temp_dir): os.makedirs(temp_dir) progress(0, desc="Starting conversion") all_images = [] for pdf_file in progress.tqdm(pdf_files, desc="Converting PDFs"): pdf_path = pdf_file.name pdf = PdfReader(pdf_path) total_pages = len(pdf.pages) # Determine the number of pages to convert pages_to_convert = ( total_pages if sample_size == 0 else min(sample_size, total_pages) ) # Select random pages if sampling if sample_size > 0 and sample_size < total_pages: selected_pages = sorted( random.sample(range(1, total_pages + 1), pages_to_convert) ) else: selected_pages = range(1, total_pages + 1) # Convert selected PDF pages to images for page_num in selected_pages: images = convert_from_path( pdf_path, first_page=page_num, last_page=page_num ) for image in images: image_path = os.path.join( temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num}.jpg" ) image.save(image_path, "JPEG") all_images.append(image_path) return all_images, f"Saved {len(all_images)} images to temporary directory" def process_pdfs( pdf_files, sample_size, hf_repo, oauth_token: gr.OAuthToken | None, progress=gr.Progress(), ): if not pdf_files: return None, None, "No PDF files uploaded." if oauth_token is None: gr.Info("Please log in to upload to Hugging Face.") return ( None, None, "Not logged in to Hugging Face, please log in to upload to a Hugging Face dataset.", ) try: temp_dir = tempfile.mkdtemp() images_dir = os.path.join(temp_dir, "images") os.makedirs(images_dir) images, message = pdf_to_images(pdf_files, sample_size, images_dir) # Create a zip file of the images zip_path = os.path.join(temp_dir, "converted_images.zip") with zipfile.ZipFile(zip_path, "w") as zipf: progress(0, desc="Zipping images") for image in progress.tqdm(images, desc="Zipping images"): zipf.write(image, os.path.basename(image)) if hf_repo: try: hf_api = HfApi(token=oauth_token.token) hf_api.create_repo( hf_repo, repo_type="dataset", ) hf_api.upload_folder( folder_path=images_dir, repo_id=hf_repo, repo_type="dataset", path_in_repo="images", ) message += f"\nUploaded images to Hugging Face repo: {hf_repo}/images" except Exception as e: message += f"\nFailed to upload to Hugging Face: {str(e)}" return images, zip_path, message except Exception as e: if "temp_dir" in locals(): shutil.rmtree(temp_dir) return None, None, f"An error occurred: {str(e)}" # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# PDF to Image Converter") gr.Markdown( "Upload PDF(s), convert pages to images, and optionally upload them to a Hugging Face repo. If a sample size is specified, random pages will be selected." ) with gr.Row(): gr.LoginButton(size="sm") with gr.Row(): pdf_files = gr.File( file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"] ) with gr.Row(): sample_size = gr.Number( value=None, label="Number of sample pages (0 will return all pages)", ) hf_repo = gr.Textbox( label="Hugging Face Repo", placeholder="username/repo-name" ) output_gallery = gr.Gallery(label="Converted Images") status_text = gr.Markdown(label="Status") download_button = gr.File(label="Download Converted Images") submit_button = gr.Button("Process PDFs") submit_button.click( process_pdfs, inputs=[pdf_files, sample_size, hf_repo], outputs=[output_gallery, download_button, status_text], ) # Launch the app demo.launch(debug=True)