# import spaces import random import argparse import glob import json import os import time from concurrent.futures import ThreadPoolExecutor import gradio as gr import numpy as np import torch import torch.nn.functional as F import tqdm from huggingface_hub import hf_hub_download from transformers import DynamicCache import MIDI from midi_model import MIDIModel, MIDIModelConfig from midi_synthesizer import MidiSynthesizer MAX_SEED = np.iinfo(np.int32).max in_space = os.getenv("SYSTEM") == "spaces" @torch.inference_mode() def generate(model: MIDIModel, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None): tokenizer = model.tokenizer if disable_channels is not None: disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] else: disable_channels = [] max_token_seq = tokenizer.max_token_seq if prompt is None: input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device) input_tensor[0, 0] = tokenizer.bos_id # bos input_tensor = input_tensor.unsqueeze(0) input_tensor = torch.cat([input_tensor] * batch_size, dim=0) else: if len(prompt.shape) == 2: prompt = prompt[None, :] prompt = np.repeat(prompt, repeats=batch_size, axis=0) elif prompt.shape[0] == 1: prompt = np.repeat(prompt, repeats=batch_size, axis=0) elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size: raise ValueError(f"invalid shape for prompt, {prompt.shape}") prompt = prompt[..., :max_token_seq] if prompt.shape[-1] < max_token_seq: prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])), mode="constant", constant_values=tokenizer.pad_id) input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device) cur_len = input_tensor.shape[1] bar = tqdm.tqdm(desc="generating", total=max_len - cur_len) cache1 = DynamicCache() past_len = 0 with bar: while cur_len < max_len: end = [False] * batch_size hidden = model.forward(input_tensor[:, past_len:], cache=cache1)[:, -1] next_token_seq = None event_names = [""] * batch_size cache2 = DynamicCache() for i in range(max_token_seq): mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=model.device) for b in range(batch_size): if end[b]: mask[b, tokenizer.pad_id] = 1 continue if i == 0: mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] if disable_patch_change: mask_ids.remove(tokenizer.event_ids["patch_change"]) if disable_control_change: mask_ids.remove(tokenizer.event_ids["control_change"]) mask[b, mask_ids] = 1 else: param_names = tokenizer.events[event_names[b]] if i > len(param_names): mask[b, tokenizer.pad_id] = 1 continue param_name = param_names[i - 1] mask_ids = tokenizer.parameter_ids[param_name] if param_name == "channel": mask_ids = [i for i in mask_ids if i not in disable_channels] mask[b, mask_ids] = 1 mask = mask.unsqueeze(1) x = next_token_seq if i != 0: hidden = None x = x[:, -1:] logits = model.forward_token(hidden, x, cache=cache2)[:, -1:] scores = torch.softmax(logits / temp, dim=-1) * mask samples = model.sample_top_p_k(scores, top_p, top_k, generator=generator) if i == 0: next_token_seq = samples for b in range(batch_size): if end[b]: continue eid = samples[b].item() if eid == tokenizer.eos_id: end[b] = True else: event_names[b] = tokenizer.id_events[eid] else: next_token_seq = torch.cat([next_token_seq, samples], dim=1) if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]): break if next_token_seq.shape[1] < max_token_seq: next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]), "constant", value=tokenizer.pad_id) next_token_seq = next_token_seq.unsqueeze(1) input_tensor = torch.cat([input_tensor, next_token_seq], dim=1) past_len = cur_len cur_len += 1 bar.update(1) yield next_token_seq[:, 0].cpu().numpy() if all(end): break def create_msg(name, data): return {"name": name, "data": data} def send_msgs(msgs): return json.dumps(msgs) def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc): t = gen_events // 23 if "large" in model_name: t = gen_events // 14 return t + 5 # @spaces.GPU(duration=get_duration) def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc): model = models[model_name] model.to(device=opt.device) tokenizer = model.tokenizer bpm = int(bpm) if time_sig == "auto": time_sig = None time_sig_nn = 4 time_sig_dd = 2 else: time_sig_nn, time_sig_dd = time_sig.split('/') time_sig_nn = int(time_sig_nn) time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)] if key_sig == 0: key_sig = None key_sig_sf = 0 key_sig_mi = 0 else: key_sig = (key_sig - 1) key_sig_sf = key_sig // 2 - 7 key_sig_mi = key_sig % 2 gen_events = int(gen_events) max_len = gen_events if seed_rand: seed = random.randint(0, MAX_SEED) generator = torch.Generator(opt.device).manual_seed(seed) disable_patch_change = False disable_channels = None if tab == 0: i = 0 mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] if tokenizer.version == "v2": if time_sig is not None: mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1])) if key_sig is not None: mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi])) if bpm != 0: mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm])) patches = {} if instruments is None: instruments = [] for instr in instruments: patches[i] = patch2number[instr] i = (i + 1) if i != 8 else 10 if drum_kit != "None": patches[9] = drum_kits2number[drum_kit] for i, (c, p) in enumerate(patches.items()): mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p])) mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64) mid_seq = mid.tolist() if len(instruments) > 0: disable_patch_change = True disable_channels = [i for i in range(16) if i not in patches] elif tab == 1 and mid is not None: eps = 4 if reduce_cc_st else 0 mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps, remap_track_channel=remap_track_channel, add_default_instr=add_default_instr, remove_empty_channels=remove_empty_channels) mid = mid[:int(midi_events)] mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64) mid_seq = mid.tolist() elif tab == 2 and mid_seq is not None: mid = np.asarray(mid_seq, dtype=np.int64) if continuation_select > 0: continuation_state.append(mid_seq) mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0) mid_seq = mid.tolist() else: continuation_state.append(mid.shape[1]) else: continuation_state = [0] mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64) mid_seq = mid.tolist() if mid is not None: max_len += mid.shape[1] init_msgs = [create_msg("progress", [0, gen_events])] if not (tab == 2 and continuation_select == 0): for i in range(OUTPUT_BATCH_SIZE): events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]] init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]), create_msg("visualizer_append", [i, events])] yield mid_seq, continuation_state, seed, send_msgs(init_msgs) midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change, disable_control_change=not allow_cc, disable_channels=disable_channels, generator=generator) events = [list() for i in range(OUTPUT_BATCH_SIZE)] t = time.time() + 1 for i, token_seqs in enumerate(midi_generator): token_seqs = token_seqs.tolist() for j in range(OUTPUT_BATCH_SIZE): token_seq = token_seqs[j] mid_seq[j].append(token_seq) events[j].append(tokenizer.tokens2event(token_seq)) if time.time() - t > 0.5: msgs = [create_msg("progress", [i + 1, gen_events])] for j in range(OUTPUT_BATCH_SIZE): msgs += [create_msg("visualizer_append", [j, events[j]])] events[j] = list() yield mid_seq, continuation_state, seed, send_msgs(msgs) t = time.time() yield mid_seq, continuation_state, seed, send_msgs([]) def finish_run(model_name, mid_seq): if mid_seq is None: outputs = [None] * OUTPUT_BATCH_SIZE return *outputs, [] tokenizer = models[model_name].tokenizer outputs = [] end_msgs = [create_msg("progress", [0, 0])] if not os.path.exists("outputs"): os.mkdir("outputs") for i in range(OUTPUT_BATCH_SIZE): events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]] mid = tokenizer.detokenize(mid_seq[i]) with open(f"outputs/output{i + 1}.mid", 'wb') as f: f.write(MIDI.score2midi(mid)) outputs.append(f"outputs/output{i + 1}.mid") end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]), create_msg("visualizer_append", [i, events]), create_msg("visualizer_end", i)] return *outputs, send_msgs(end_msgs) def synthesis_task(mid): return synthesizer.synthesis(MIDI.score2opus(mid)) def render_audio(model_name, mid_seq, should_render_audio): if (not should_render_audio) or mid_seq is None: outputs = [None] * OUTPUT_BATCH_SIZE return tuple(outputs) tokenizer = models[model_name].tokenizer outputs = [] if not os.path.exists("outputs"): os.mkdir("outputs") audio_futures = [] for i in range(OUTPUT_BATCH_SIZE): mid = tokenizer.detokenize(mid_seq[i]) audio_future = thread_pool.submit(synthesis_task, mid) audio_futures.append(audio_future) for future in audio_futures: outputs.append((44100, future.result())) if OUTPUT_BATCH_SIZE == 1: return outputs[0] return tuple(outputs) def undo_continuation(model_name, mid_seq, continuation_state): if mid_seq is None or len(continuation_state) < 2: return mid_seq, continuation_state, send_msgs([]) tokenizer = models[model_name].tokenizer if isinstance(continuation_state[-1], list): mid_seq = continuation_state[-1] else: mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq] continuation_state = continuation_state[:-1] end_msgs = [create_msg("progress", [0, 0])] for i in range(OUTPUT_BATCH_SIZE): events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]] end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]), create_msg("visualizer_append", [i, events]), create_msg("visualizer_end", i)] return mid_seq, continuation_state, send_msgs(end_msgs) def load_javascript(dir="javascript"): scripts_list = glob.glob(f"{dir}/*.js") javascript = "" for path in scripts_list: with open(path, "r", encoding="utf8") as jsfile: js_content = jsfile.read() js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;", f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};") javascript += f"\n" template_response_ori = gr.routes.templates.TemplateResponse def template_response(*args, **kwargs): res = template_response_ori(*args, **kwargs) res.body = res.body.replace( b'', f'{javascript}'.encode("utf8")) res.init_headers() return res gr.routes.templates.TemplateResponse = template_response def hf_hub_download_retry(repo_id, filename): print(f"downloading {repo_id} {filename}") retry = 0 err = None while retry < 30: try: return hf_hub_download(repo_id=repo_id, filename=filename) except Exception as e: err = e retry += 1 if err: raise err number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz", 40: "Blush", 48: "Orchestra"} patch2number = {v: k for k, v in MIDI.Number2patch.items()} drum_kits2number = {v: k for k, v in number2drum_kits.items()} key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm', 'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m'] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") parser.add_argument("--port", type=int, default=7860, help="gradio server port") parser.add_argument("--device", type=str, default="cuda", help="device to run model") parser.add_argument("--batch", type=int, default=8, help="batch size") parser.add_argument("--max-gen", type=int, default=1024, help="max") opt = parser.parse_args() OUTPUT_BATCH_SIZE = opt.batch soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2") thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE) synthesizer = MidiSynthesizer(soundfont_path) models_info = { "generic pretrain model (tv2o-medium) by skytnt": [ "skytnt/midi-model-tv2o-medium", { "jpop": "skytnt/midi-model-tv2om-jpop-lora", "touhou": "skytnt/midi-model-tv2om-touhou-lora" } ], "generic pretrain model (tv2o-large) by asigalov61": [ "asigalov61/Music-Llama", {} ], "generic pretrain model (tv2o-medium) by asigalov61": [ "asigalov61/Music-Llama-Medium", {} ], "generic pretrain model (tv1-medium) by skytnt": [ "skytnt/midi-model", {} ] } models = {} if opt.device == "cuda": torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_flash_sdp(True) for name, (repo_id, loras) in models_info.items(): model = MIDIModel.from_pretrained(repo_id) model.to(device="cpu", dtype=torch.float32) models[name] = model for lora_name, lora_repo in loras.items(): model = MIDIModel.from_pretrained(repo_id) print(f"loading lora {lora_repo} for {name}") model = model.load_merge_lora(lora_repo) model.to(device="cpu", dtype=torch.float32) models[f"{name} with {lora_name} lora"] = model load_javascript() app = gr.Blocks(theme=gr.themes.Soft()) with app: gr.Markdown("