export const MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"] as const; export type Modality = (typeof MODALITIES)[number]; export const MODALITY_LABELS = { multimodal: "Multimodal", nlp: "Natural Language Processing", audio: "Audio", cv: "Computer Vision", rl: "Reinforcement Learning", tabular: "Tabular", other: "Other", } satisfies Record; /** * Public interface for a sub task. * * This can be used in a model card's `model-index` metadata. * and is more granular classification that can grow significantly * over time as new tasks are added. */ export interface SubTask { /** * type of the task (e.g. audio-source-separation) */ type: string; /** * displayed name of the task (e.g. Audio Source Separation) */ name: string; } /** * Public interface for a PipelineData. * * This information corresponds to a pipeline type (aka task) * in the Hub. */ export interface PipelineData { /** * displayed name of the task (e.g. Text Classification) */ name: string; subtasks?: SubTask[]; modality: Modality; /** * color for the tag icon. */ color: "blue" | "green" | "indigo" | "orange" | "red" | "yellow"; /** * whether to hide in /models filters */ hideInModels?: boolean; /** * whether to hide in /datasets filters */ hideInDatasets?: boolean; } /// Coarse-grained taxonomy of tasks /// /// This type is used in multiple places in the Hugging Face /// ecosystem: /// - To determine which widget to show. /// - To determine which endpoint of Inference API to use. /// - As filters at the left of models and datasets page. /// /// Note that this is sensitive to order. /// For each domain, the order should be of decreasing specificity. /// This will impact the default pipeline tag of a model when not /// specified. export const PIPELINE_DATA = { "text-classification": { name: "Text Classification", subtasks: [ { type: "acceptability-classification", name: "Acceptability Classification", }, { type: "entity-linking-classification", name: "Entity Linking Classification", }, { type: "fact-checking", name: "Fact Checking", }, { type: "intent-classification", name: "Intent Classification", }, { type: "language-identification", name: "Language Identification", }, { type: "multi-class-classification", name: "Multi Class Classification", }, { type: "multi-label-classification", name: "Multi Label Classification", }, { type: "multi-input-text-classification", name: "Multi-input Text Classification", }, { type: "natural-language-inference", name: "Natural Language Inference", }, { type: "semantic-similarity-classification", name: "Semantic Similarity Classification", }, { type: "sentiment-classification", name: "Sentiment Classification", }, { type: "topic-classification", name: "Topic Classification", }, { type: "semantic-similarity-scoring", name: "Semantic Similarity Scoring", }, { type: "sentiment-scoring", name: "Sentiment Scoring", }, { type: "sentiment-analysis", name: "Sentiment Analysis", }, { type: "hate-speech-detection", name: "Hate Speech Detection", }, { type: "text-scoring", name: "Text Scoring", }, ], modality: "nlp", color: "orange", }, "token-classification": { name: "Token Classification", subtasks: [ { type: "named-entity-recognition", name: "Named Entity Recognition", }, { type: "part-of-speech", name: "Part of Speech", }, { type: "parsing", name: "Parsing", }, { type: "lemmatization", name: "Lemmatization", }, { type: "word-sense-disambiguation", name: "Word Sense Disambiguation", }, { type: "coreference-resolution", name: "Coreference-resolution", }, ], modality: "nlp", color: "blue", }, "table-question-answering": { name: "Table Question Answering", modality: "nlp", color: "green", }, "question-answering": { name: "Question Answering", subtasks: [ { type: "extractive-qa", name: "Extractive QA", }, { type: "open-domain-qa", name: "Open Domain QA", }, { type: "closed-domain-qa", name: "Closed Domain QA", }, ], modality: "nlp", color: "blue", }, "zero-shot-classification": { name: "Zero-Shot Classification", modality: "nlp", color: "yellow", }, translation: { name: "Translation", modality: "nlp", color: "green", }, summarization: { name: "Summarization", subtasks: [ { type: "news-articles-summarization", name: "News Articles Summarization", }, { type: "news-articles-headline-generation", name: "News Articles Headline Generation", }, ], modality: "nlp", color: "indigo", }, conversational: { name: "Conversational", subtasks: [ { type: "dialogue-generation", name: "Dialogue Generation", }, ], modality: "nlp", color: "green", }, "feature-extraction": { name: "Feature Extraction", modality: "multimodal", color: "red", }, "text-generation": { name: "Text Generation", subtasks: [ { type: "dialogue-modeling", name: "Dialogue Modeling", }, { type: "language-modeling", name: "Language Modeling", }, ], modality: "nlp", color: "indigo", }, "text2text-generation": { name: "Text2Text Generation", subtasks: [ { type: "text-simplification", name: "Text simplification", }, { type: "explanation-generation", name: "Explanation Generation", }, { type: "abstractive-qa", name: "Abstractive QA", }, { type: "open-domain-abstractive-qa", name: "Open Domain Abstractive QA", }, { type: "closed-domain-qa", name: "Closed Domain QA", }, { type: "open-book-qa", name: "Open Book QA", }, { type: "closed-book-qa", name: "Closed Book QA", }, ], modality: "nlp", color: "indigo", }, "fill-mask": { name: "Fill-Mask", subtasks: [ { type: "slot-filling", name: "Slot Filling", }, { type: "masked-language-modeling", name: "Masked Language Modeling", }, ], modality: "nlp", color: "red", }, "sentence-similarity": { name: "Sentence Similarity", modality: "nlp", color: "yellow", }, "text-to-speech": { name: "Text-to-Speech", modality: "audio", color: "yellow", }, "text-to-audio": { name: "Text-to-Audio", modality: "audio", color: "yellow", }, "automatic-speech-recognition": { name: "Automatic Speech Recognition", modality: "audio", color: "yellow", }, "audio-to-audio": { name: "Audio-to-Audio", modality: "audio", color: "blue", }, "audio-classification": { name: "Audio Classification", subtasks: [ { type: "keyword-spotting", name: "Keyword Spotting", }, { type: "speaker-identification", name: "Speaker Identification", }, { type: "audio-intent-classification", name: "Audio Intent Classification", }, { type: "audio-emotion-recognition", name: "Audio Emotion Recognition", }, { type: "audio-language-identification", name: "Audio Language Identification", }, ], modality: "audio", color: "green", }, "voice-activity-detection": { name: "Voice Activity Detection", modality: "audio", color: "red", }, "depth-estimation": { name: "Depth Estimation", modality: "cv", color: "yellow", }, "image-classification": { name: "Image Classification", subtasks: [ { type: "multi-label-image-classification", name: "Multi Label Image Classification", }, { type: "multi-class-image-classification", name: "Multi Class Image Classification", }, ], modality: "cv", color: "blue", }, "object-detection": { name: "Object Detection", subtasks: [ { type: "face-detection", name: "Face Detection", }, { type: "vehicle-detection", name: "Vehicle Detection", }, ], modality: "cv", color: "yellow", }, "image-segmentation": { name: "Image Segmentation", subtasks: [ { type: "instance-segmentation", name: "Instance Segmentation", }, { type: "semantic-segmentation", name: "Semantic Segmentation", }, { type: "panoptic-segmentation", name: "Panoptic Segmentation", }, ], modality: "cv", color: "green", }, "text-to-image": { name: "Text-to-Image", modality: "multimodal", color: "yellow", }, "image-to-text": { name: "Image-to-Text", subtasks: [ { type: "image-captioning", name: "Image Captioning", }, ], modality: "multimodal", color: "red", }, "image-to-image": { name: "Image-to-Image", modality: "cv", color: "indigo", }, "unconditional-image-generation": { name: "Unconditional Image Generation", modality: "cv", color: "green", }, "video-classification": { name: "Video Classification", modality: "cv", color: "blue", }, "reinforcement-learning": { name: "Reinforcement Learning", modality: "rl", color: "red", }, robotics: { name: "Robotics", modality: "rl", subtasks: [ { type: "grasping", name: "Grasping", }, { type: "task-planning", name: "Task Planning", }, ], color: "blue", }, "tabular-classification": { name: "Tabular Classification", modality: "tabular", subtasks: [ { type: "tabular-multi-class-classification", name: "Tabular Multi Class Classification", }, { type: "tabular-multi-label-classification", name: "Tabular Multi Label Classification", }, ], color: "blue", }, "tabular-regression": { name: "Tabular Regression", modality: "tabular", subtasks: [ { type: "tabular-single-column-regression", name: "Tabular Single Column Regression", }, ], color: "blue", }, "tabular-to-text": { name: "Tabular to Text", modality: "tabular", subtasks: [ { type: "rdf-to-text", name: "RDF to text", }, ], color: "blue", hideInModels: true, }, "table-to-text": { name: "Table to Text", modality: "nlp", color: "blue", hideInModels: true, }, "multiple-choice": { name: "Multiple Choice", subtasks: [ { type: "multiple-choice-qa", name: "Multiple Choice QA", }, { type: "multiple-choice-coreference-resolution", name: "Multiple Choice Coreference Resolution", }, ], modality: "nlp", color: "blue", hideInModels: true, }, "text-retrieval": { name: "Text Retrieval", subtasks: [ { type: "document-retrieval", name: "Document Retrieval", }, { type: "utterance-retrieval", name: "Utterance Retrieval", }, { type: "entity-linking-retrieval", name: "Entity Linking Retrieval", }, { type: "fact-checking-retrieval", name: "Fact Checking Retrieval", }, ], modality: "nlp", color: "indigo", hideInModels: true, }, "time-series-forecasting": { name: "Time Series Forecasting", modality: "tabular", subtasks: [ { type: "univariate-time-series-forecasting", name: "Univariate Time Series Forecasting", }, { type: "multivariate-time-series-forecasting", name: "Multivariate Time Series Forecasting", }, ], color: "blue", hideInModels: true, }, "text-to-video": { name: "Text-to-Video", modality: "multimodal", color: "green", }, "visual-question-answering": { name: "Visual Question Answering", subtasks: [ { type: "visual-question-answering", name: "Visual Question Answering", }, ], modality: "multimodal", color: "red", }, "document-question-answering": { name: "Document Question Answering", subtasks: [ { type: "document-question-answering", name: "Document Question Answering", }, ], modality: "multimodal", color: "blue", hideInDatasets: true, }, "zero-shot-image-classification": { name: "Zero-Shot Image Classification", modality: "cv", color: "yellow", }, "graph-ml": { name: "Graph Machine Learning", modality: "multimodal", color: "green", }, other: { name: "Other", modality: "other", color: "blue", hideInModels: true, hideInDatasets: true, }, } satisfies Record; export type PipelineType = keyof typeof PIPELINE_DATA; export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];