import gradio as gr import numpy as np import random # import spaces import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from gradio_imageslider import ImageSlider from PIL import Image, ImageDraw, ImageFont dtype = torch.bfloat16 #model_id = "black-forest-labs/FLUX.1-dev" model_id = "camenduru/FLUX.1-dev-diffusers" device = "cuda" if torch.cuda.is_available() else "cpu" #taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device) #pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device) pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device) torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) def get_cmp_image(im1: Image.Image, im2: Image.Image, sigmas: float): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1.convert('RGB'), (0, 0)) dst.paste(im2.convert('RGB'), (im1.width, 0)) font = ImageFont.truetype('Roboto-Regular.ttf', 72, encoding='unic') draw = ImageDraw.Draw(dst) draw.text((64, im1.height - 128), 'Default Flux', 'red', font=font) draw.text((im1.width + 64, im1.height - 128), f'Sigmas * factor {sigmas}', 'red', font=font) return dst # @spaces.GPU(duration=90) def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, mul_sigmas=0.95, is_cmp=True, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) sigmas = sigmas * mul_sigmas image_sigmas = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", sigmas=sigmas ).images[0] if is_cmp: image_def = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", ).images[0] return [image_def, image_sigmas], get_cmp_image(image_def, image_sigmas, mul_sigmas), seed else: return [image_sigmas, image_sigmas], None, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] sigmas test 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) #result = gr.Image(label="Result", show_label=False) result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink") result_cmp = gr.Image(label="Result (comparing)", show_label=False, type="pil", format="png", height=256, show_download_button=True, show_share_button=False) with gr.Accordion("Advanced Settings", open=True): with gr.Row(): sigmas = gr.Slider( label="Sigmas", minimum=0, maximum=1.0, step=0.01, value=0.95, ) is_cmp = gr.Checkbox(label="Compare images with/without sigmas", value=True) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=9119, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=False) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, result_cmp, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sigmas, is_cmp], outputs = [result, result_cmp, seed] ) demo.launch()