from modules.load_configure import * import time if echo == "True": from modules.echo import * import os import gradio as gr import copy import llama_cpp from llama_cpp import Llama import random from huggingface_hub import hf_hub_download from modules.download_model import download_model from modules.inference import load_model, generate_text from modules.model_list import list_models from modules.render_markdown import render_md from modules.load_presets import load_presets_names, load_presets_value from modules.arg_parser import * #from blip.blip_engine import blip_run dir = os.getcwd() if footer == "True": footer_vis = True else: footer_vis = False history = [] chatbot = gr.Chatbot(show_label=False, layout=chat_style, show_copy_button=True, height=500, min_width=180) with gr.Blocks(theme=theme, title=f"TensorLM v{tlm_version}", css="style.css") as webui: #refresh_model = gr.Button(value="Load model", interactive=True, scale=1) with gr.Row(): with gr.Row(render=False, variant="panel") as sliders: with gr.Tab("Parameters"): max_tokens = gr.Slider(label="Max new tokens", minimum=256, maximum=4056, value=512, step=8, interactive=True) temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.00, value=0.15, step=0.01, interactive=True) top_p = gr.Slider(label="Top P", minimum=0.01, maximum=2.00, value=0.10, step=0.01, interactive=True) top_k = gr.Slider(label="Top K", minimum=10.00, maximum=100.00, value=40.00, step=0.01, interactive=True) repeat_penalty = gr.Slider(label="Repeat penalty", minimum=0.01, maximum=2.00, value=1.10, step=0.01, interactive=True) with gr.Tab("Instructions"): preset = gr.Radio(label="Prompt preset", choices=load_presets_names(), value=load_presets_names()[1], interactive=True) system_prompt = gr.Textbox(label="Custom system prompt", max_lines=4, lines=3, interactive=True) with gr.Tab("Model"): model = gr.Dropdown(label="Model (only based on Llama in GGML format (.bin))", choices=os.listdir(f"{dir}\models"), value="None", interactive=True, allow_custom_value=False, scale=50) with gr.Row(render=False) as settings: reload_model = gr.Button("Apply settings to model", interactive=True) n_ctx = gr.Slider(label="Number of CTX", minimum=1024, maximum=4056, value=2048, step=8, interactive=True) n_gpu_layers = gr.Slider(label="Number of GPU layers", minimum=0, maximum=36, value=0, step=1, interactive=True) n_threads = gr.Slider(label="Number of Threads", minimum=2, maximum=36, value=4, step=1, interactive=True) verbose = gr.Checkbox(label="Verbose", value=True, interactive=True) f16_kv = gr.Checkbox(label="F16 KV", value=True, interactive=True) logits_all = gr.Checkbox(label="Logits all", value=False, interactive=True) vocab_only = gr.Checkbox(label="Vocab only", value=False, interactive=True) use_mmap = gr.Checkbox(label="Use mmap", value=True, interactive=True) use_mlock = gr.Checkbox(label="Use mlock", value=False, interactive=True) n_batch = gr.Slider(label="Number of batch", minimum=128, maximum=2048, value=512, step=8, interactive=True) last_n_tokens_size = gr.Slider(label="Last number of tokens size", minimum=8, maximum=512, value=64, step=8, interactive=True) low_vram = gr.Checkbox(label="Low VRAM", value=lowvram_arg, interactive=True) rope_freq_base = gr.Slider(label="Rope freq base", minimum=1000.0, maximum=30000.0, value=10000.0, step=0.1, interactive=True) rope_freq_scale = gr.Slider(label="Rope freq scale", minimum=0.1, maximum=3.0, value=1.0, step=0.1) with gr.Column(scale=2): with gr.Row(): gr.ChatInterface( generate_text, chatbot=chatbot, retry_btn="🔄ī¸", submit_btn="📨", undo_btn="↩ī¸", clear_btn="🗑ī¸", additional_inputs=[system_prompt, preset, temperature, max_tokens, top_k, top_k, repeat_penalty, model, n_ctx, n_gpu_layers, n_threads, verbose, f16_kv, logits_all, vocab_only, use_mmap, use_mlock, n_batch, last_n_tokens_size, low_vram, rope_freq_base, rope_freq_scale] ) with gr.Row(): options_change = gr.Checkbox(label="Options", value=False, interactive=True) tabs_change = gr.Checkbox(label="Tabs", value=False, interactive=True) with gr.Row(): with gr.Row(visible=False) as tabs: with gr.Tab("ModelGet"): gr.Markdown("## Download model from 🤗 HuggingFace.co") with gr.Row(): repo_id = gr.Textbox(label="REPO_ID", value="ehristoforu/LLMs", lines=1, max_lines=1, interactive=False) filename = gr.Dropdown(label="FILENAME", interactive=True, choices=["llama-2-7b-chat.ggmlv3.q2_K.bin", "llama-2-13b-chat.ggmlv3.q2_K.bin", "codellama-7b-instruct.ggmlv3.Q2_K.bin", "codellama-13b-instruct.ggmlv3.Q2_K.bin", "saiga-13b.ggmlv3.Q4_1.bin", "saiga-30b.ggmlv3.Q3_K.bin"], value="", allow_custom_value=False) download_btn = gr.Button(value="Download") logs=gr.Markdown() with gr.Tab("Notebook"): with gr.Row(): with gr.Column(scale=1): render_markdown = gr.Button(value="Render markdown", interactive=True) notebook = gr.Textbox(show_label=False, value="This is a great day...", placeholder="Your notebook", max_lines=40, lines=35, interactive=True, show_copy_button=True) with gr.Row(): with gr.Column(scale=1): markdown = gr.Markdown() with gr.Tab("Settings"): with gr.Row(): with gr.Column(): #with gr.Row(): # gr.Markdown("### Style") # chat_style = gr.Dropdown(label="Style of chat", choices=["bubble", "panel"], value="bubble", interactive=True, allow_custom_value=False) settings.render() with gr.Row(): gr.Markdown(f"""
v{tlm_version} | API | gradio 4.1.0 | llama.cpp | python | Suggested models
""", visible=footer_vis) with gr.Row(visible=False) as options: with gr.Column(scale=1): sliders.render() render_markdown.click( fn=render_md, inputs=notebook, outputs=markdown, queue=False, api_name=False, ) notebook.change( fn=render_md, inputs=notebook, outputs=markdown, queue=False, api_name=False, ) options_change.change( fn=lambda x: gr.update(visible=x), inputs=options_change, outputs=options, queue=False, api_name=False, ) tabs_change.change( fn=lambda x: gr.update(visible=x), inputs=tabs_change, outputs=tabs, queue=False, api_name=False, ) download_btn.click(download_model, inputs=[repo_id, filename], outputs=logs, api_name=False, queue=False) model.change(load_model, inputs=[model, n_ctx, n_gpu_layers, n_threads, verbose, f16_kv, logits_all, vocab_only, use_mmap, use_mlock, n_batch, last_n_tokens_size, low_vram, rope_freq_base, rope_freq_scale], outputs=model, api_name=False, queue=False) reload_model.click(load_model, inputs=[model, n_ctx, n_gpu_layers, n_threads, verbose, f16_kv, logits_all, vocab_only, use_mmap, use_mlock, n_batch, last_n_tokens_size, low_vram, rope_freq_base, rope_freq_scale], outputs=model, api_name=False, queue=False) webui.launch( inbrowser=inbrowser_arg, debug=debug_arg, quiet=quiet_arg, favicon_path="assets/favicon.png", show_api=show_api, share_server_protocol=share_server_protocol, )