import time import torch import onnx import cv2 import onnxruntime import numpy as np from tqdm import tqdm import torch.nn as nn from onnx import numpy_helper from skimage import transform as trans import torchvision.transforms.functional as F import torch.nn.functional as F from utils import mask_crop, laplacian_blending arcface_dst = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) def estimate_norm(lmk, image_size=112, mode='arcface'): assert lmk.shape == (5, 2) assert image_size % 112 == 0 or image_size % 128 == 0 if image_size % 112 == 0: ratio = float(image_size) / 112.0 diff_x = 0 else: ratio = float(image_size) / 128.0 diff_x = 8.0 * ratio dst = arcface_dst * ratio dst[:, 0] += diff_x tform = trans.SimilarityTransform() tform.estimate(lmk, dst) M = tform.params[0:2, :] return M def norm_crop2(img, landmark, image_size=112, mode='arcface'): M = estimate_norm(landmark, image_size, mode) warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) return warped, M class Inswapper(): def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']): self.model_file = model_file self.batch_size = batch_size model = onnx.load(self.model_file) graph = model.graph self.emap = numpy_helper.to_array(graph.initializer[-1]) self.session_options = onnxruntime.SessionOptions() self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers) def forward(self, imgs, latents): preds = [] for img, latent in zip(imgs, latents): img = img / 255 pred = self.session.run(['output'], {'target': img, 'source': latent})[0] preds.append(pred) def get(self, imgs, target_faces, source_faces): imgs = list(imgs) preds = [None] * len(imgs) matrs = [None] * len(imgs) for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)): matrix, blob, latent = self.prepare_data(img, target_face, source_face) pred = self.session.run(['output'], {'target': blob, 'source': latent})[0] pred = pred.transpose((0, 2, 3, 1))[0] pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1] preds[idx] = pred matrs[idx] = matrix return (preds, matrs) def prepare_data(self, img, target_face, source_face): if isinstance(img, str): img = cv2.imread(img) aligned_img, matrix = norm_crop2(img, target_face.kps, 128) blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True) latent = source_face.normed_embedding.reshape((1, -1)) latent = np.dot(latent, self.emap) latent /= np.linalg.norm(latent) return (matrix, blob, latent) def batch_forward(self, img_list, target_f_list, source_f_list): num_samples = len(img_list) num_batches = (num_samples + self.batch_size - 1) // self.batch_size for i in tqdm(range(num_batches), desc="Generating face"): start_idx = i * self.batch_size end_idx = min((i + 1) * self.batch_size, num_samples) batch_img = img_list[start_idx:end_idx] batch_target_f = target_f_list[start_idx:end_idx] batch_source_f = source_f_list[start_idx:end_idx] batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f) yield batch_pred, batch_matr def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'): inv_matrix = cv2.invertAffineTransform(matrix) fg_shape = foreground.shape[:2] bg_shape = (background.shape[1], background.shape[0]) foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0) if mask is None: mask = np.full(fg_shape, 1., dtype=np.float32) mask = mask_crop(mask, crop_mask) mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0) else: assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!" mask = mask_crop(mask, crop_mask).astype('float32') mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0) _mask = mask.copy() _mask[_mask > 0.05] = 1. non_zero_points = cv2.findNonZero(_mask) _, _, w, h = cv2.boundingRect(non_zero_points) mask_size = int(np.sqrt(w * h)) if erode_amount > 0: kernel_size = max(int(mask_size * erode_amount), 1) structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) mask = cv2.erode(mask, structuring_element) if blur_amount > 0: kernel_size = max(int(mask_size * blur_amount), 3) if kernel_size % 2 == 0: kernel_size += 1 mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0) mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3)) if blend_method == 'laplacian': composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4) else: composite_image = mask * foreground + (1 - mask) * background return composite_image.astype("uint8").clip(0, 255)