import cv2 import torch import torchvision import numpy as np import torch.nn as nn from PIL import Image from tqdm import tqdm import torch.nn.functional as F import torchvision.transforms as transforms from . model import BiSeNet class SoftErosion(nn.Module): def __init__(self, kernel_size=15, threshold=0.6, iterations=1): super(SoftErosion, self).__init__() r = kernel_size // 2 self.padding = r self.iterations = iterations self.threshold = threshold # Create kernel y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) kernel = dist.max() - dist kernel /= kernel.sum() kernel = kernel.view(1, 1, *kernel.shape) self.register_buffer('weight', kernel) def forward(self, x): batch_size = x.size(0) # Get the batch size output = [] for i in tqdm(range(batch_size), desc="Soft-Erosion", leave=False): input_tensor = x[i:i+1] # Take one input tensor from the batch input_tensor = input_tensor.float() # Convert input to float tensor input_tensor = input_tensor.unsqueeze(1) # Add a channel dimension for _ in range(self.iterations - 1): input_tensor = torch.min(input_tensor, F.conv2d(input_tensor, weight=self.weight, groups=input_tensor.shape[1], padding=self.padding)) input_tensor = F.conv2d(input_tensor, weight=self.weight, groups=input_tensor.shape[1], padding=self.padding) mask = input_tensor >= self.threshold input_tensor[mask] = 1.0 input_tensor[~mask] /= input_tensor[~mask].max() input_tensor = input_tensor.squeeze(1) # Remove the extra channel dimension output.append(input_tensor.detach().cpu().numpy()) return np.array(output) transform = transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) def init_parsing_model(model_path, device="cpu"): net = BiSeNet(19) net.to(device) net.load_state_dict(torch.load(model_path)) net.eval() return net def transform_images(imgs): tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0) return tensor_images def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8, softness=20): if softness > 0: smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=softness).to(device) masks = [] for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"): batch_imgs = imgs[i:i + batch_size] tensor_images = transform_images(batch_imgs).to(device) with torch.no_grad(): out = net(tensor_images)[0] # parsing = out.argmax(dim=1) # arget_classes = torch.tensor(classes).to(device) # batch_masks = torch.isin(parsing, target_classes).to(device) ## torch.isin was slightly slower in my test, so using np.isin parsing = out.argmax(dim=1).detach().cpu().numpy() batch_masks = np.isin(parsing, classes).astype('float32') if softness > 0: # batch_masks = smooth_mask(batch_masks).transpose(1,0,2,3)[0] mask_tensor = torch.from_numpy(batch_masks.copy()).float().to(device) batch_masks = smooth_mask(mask_tensor).transpose(1,0,2,3)[0] yield batch_masks #masks.append(batch_masks) #if len(masks) >= 1: # masks = np.concatenate(masks, axis=0) # masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1) # for i, mask in enumerate(masks): # cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8")) #return masks