import gradio as gr import torch from transformers import T5Tokenizer, T5ForConditionalGeneration def load_model(model_path, dtype): if dtype == "fp32": torch_dtype = torch.float32 elif dtype == "fp16": torch_dtype = torch.float16 else: raise ValueError("Invalid dtype. Only 'fp32' or 'fp16' are supported.") model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch_dtype) return model def generate( prompt, history, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed_checkbox, seed, model_path="roborovski/superprompt-v1", dtype="fp16", ): tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = load_model(model_path, dtype) if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") model.to(device) input_text = f"{prompt}, {history}" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) if seed_checkbox: torch.manual_seed(seed) outputs = model.generate( input_ids, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, do_sample=True, temperature=temperature, top_p=top_p, top_k=top_k, ) better_prompt = tokenizer.decode(outputs[0]) return better_prompt additional_inputs = [ gr.Slider( value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output", ), gr.Slider( value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself", ), gr.Slider( value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs", ), gr.Slider( value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens", ), gr.Slider( value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens", ), gr.Checkbox( value=False, label="Use Random Seed", info="Check to use a random seed for the generation process", ), gr.Number( value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process", ), gr.Radio( choices=["fp32", "fp16"], value="fp16", label="Model Precision", info="Select the precision of the model: fp32 or fp16", ), ] examples = [ [ "Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.", None, None, None, None, None, None, False, None, "roborovski/superprompt-v1", "fp16", ] ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot( show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel" ), additional_inputs=additional_inputs, title="SuperPrompt-v1", description="Make your prompts more detailed!", examples=examples, concurrency_limit=20, ).launch(show_api=False)