import gradio as gr import requests import io import random import os from PIL import Image # List of available models list_models = [ "SDXL 1.0", "SD 1.5", "OpenJourney", "Anything V4.0", "Disney Pixar Cartoon", "Pixel Art XL", "Dalle 3 XL", "Midjourney V4 XL", "Open Diffusion V1", "SSD 1B", "Segmind Vega", "Animagine XL-2.0", "Animagine XL-3.0", "OpenDalle", "OpenDalle V1.1", "PlaygroundV2 1024px aesthetic", ] # Function to generate images from text def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None): if current_model == "SD 1.5": API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5" elif current_model == "SDXL 1.0": API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" elif current_model == "OpenJourney": API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney" elif current_model == "Anything V4.0": API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" elif current_model == "Disney Pixar Cartoon": API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon" elif current_model == "Pixel Art XL": API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl" elif current_model == "Dalle 3 XL": API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" elif current_model == "Midjourney V4 XL": API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl" elif current_model == "Open Diffusion V1": API_URL = "https://api-inference.huggingface.co/models/openskyml/open-diffusion-v1" elif current_model == "SSD 1B": API_URL = "https://api-inference.huggingface.co/models/segmind/SSD-1B" elif current_model == "Segmind Vega": API_URL = "https://api-inference.huggingface.co/models/segmind/Segmind-Vega" elif current_model == "Animagine XL-2.0": API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0" elif current_model == "Animagine XL-3.0": API_URL = "https://api-inference.huggingface.co/models/cagliostrolab/animagine-xl-3.0" elif current_model == "OpenDalle": API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalle" elif current_model == "OpenDalle V1.1": API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1" elif current_model == "PlaygroundV2 1024px aesthetic": API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic" API_TOKEN = os.environ.get("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} if image_style == "None style": payload = { "inputs": prompt + ", 8k", "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } elif image_style == "Cinematic": payload = { "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko", "is_negative": is_negative + ", abstract, cartoon, stylized", "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } elif image_style == "Digital Art": payload = { "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star", "is_negative": is_negative + ", sharp , modern , bright", "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } elif image_style == "Portrait": payload = { "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)", "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } image_bytes = requests.post(API_URL, headers=headers, json=payload).content image = Image.open(io.BytesIO(image_bytes)) return image css = """ /* General Container Styles */ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; max-width: 730px !important; margin: auto; padding-top: 1.5rem; text-align: center; /* Center the content horizontally */ } /* Button Styles */ .gr-button { color: white; background: #007bff; /* Use a primary color for the background */ white-space: nowrap; border: none; padding: 10px 20px; border-radius: 8px; cursor: pointer; transition: background-color 0.3s, color 0.3s; } .gr-button:hover { background-color: #0056b3; /* Darken the background color on hover */ } /* Share Button Styles */ #share-btn-container { padding: 0.5rem !important; background-color: #007bff; /* Use a primary color for the background */ justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin: 0 auto; /* Center the container horizontally */ transition: background-color 0.3s; } #share-btn-container:hover { background-color: #0056b3; /* Darken the background color on hover */ } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor: pointer; font-family: 'IBM Plex Sans', sans-serif; margin: 0.5rem !important; padding: 0.5rem !important; } /* Other Styles */ #gallery { min-height: 22rem; margin: auto; /* Center the gallery horizontally */ border-bottom-right-radius: 0.5rem !important; border-bottom-left-radius: 0.5rem !important; } /* Centered Container for the Image */ .image-container { max-width: 100%; /* Set the maximum width for the container */ margin: auto; /* Center the container horizontally */ padding: 20px; /* Add padding for spacing */ border: 1px solid #ccc; /* Add a subtle border to the container */ border-radius: 10px; overflow: hidden; /* Hide overflow if the image is larger */ max-height: 22rem; /* Set a maximum height for the container */ } /* Set a fixed size for the image */ .image-container img { max-width: 100%; /* Ensure the image fills the container */ height: auto; /* Maintain aspect ratio */ max-height: 100%; /* Set a maximum height for the image */ border-radius: 10px; box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.2); } """ PTI_SD_DESCRIPTION = '''
MultiMulti Stable Diffusion Image Generation Simplified Version
Generate images directly from text prompts (no parameter tuning required)
''' # Creating Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown(PTI_SD_DESCRIPTION) with gr.Row(): with gr.Column(): current_model = gr.Dropdown(label="Select Model", choices=list_models, value=list_models[1]) text_prompt = gr.Textbox(label="Input Prompt", placeholder="Example: a cute dog", lines=2) with gr.Column(): negative_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="Example: blurry, unfocused", lines=2) image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style") generate_button = gr.Button("Generate Image", variant='primary') with gr.Row(): image_output = gr.Image(type="pil", label="Image Output") generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output) # Launch the app demo.launch()