import os import random from datetime import datetime import gradio as gr import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler from einops import repeat from huggingface_hub import hf_hub_download, snapshot_download from omegaconf import OmegaConf from PIL import Image from torchvision import transforms from transformers import CLIPVisionModelWithProjection from src.models.pose_guider import PoseGuider from src.models.unet_2d_condition import UNet2DConditionModel from src.models.unet_3d import UNet3DConditionModel from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline from src.utils.download_models import prepare_base_model, prepare_image_encoder from src.utils.util import get_fps, read_frames, save_videos_grid # Partial download prepare_base_model() prepare_image_encoder() snapshot_download( repo_id="stabilityai/sd-vae-ft-mse", local_dir="./pretrained_weights/sd-vae-ft-mse" ) snapshot_download( repo_id="patrolli/AnimateAnyone", local_dir="./pretrained_weights", ) class AnimateController: def __init__( self, config_path="./configs/prompts/animation.yaml", weight_dtype=torch.float16, ): # Read pretrained weights path from config self.config = OmegaConf.load(config_path) self.pipeline = None self.weight_dtype = weight_dtype def animate( self, ref_image, pose_video_path, width=512, height=768, length=24, num_inference_steps=25, cfg=3.5, seed=123, ): generator = torch.manual_seed(seed) if isinstance(ref_image, np.ndarray): ref_image = Image.fromarray(ref_image) if self.pipeline is None: vae = AutoencoderKL.from_pretrained( self.config.pretrained_vae_path, ).to("cuda", dtype=self.weight_dtype) reference_unet = UNet2DConditionModel.from_pretrained( self.config.pretrained_base_model_path, subfolder="unet", ).to(dtype=self.weight_dtype, device="cuda") inference_config_path = self.config.inference_config infer_config = OmegaConf.load(inference_config_path) denoising_unet = UNet3DConditionModel.from_pretrained_2d( self.config.pretrained_base_model_path, self.config.motion_module_path, subfolder="unet", unet_additional_kwargs=infer_config.unet_additional_kwargs, ).to(dtype=self.weight_dtype, device="cuda") pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to( dtype=self.weight_dtype, device="cuda" ) image_enc = CLIPVisionModelWithProjection.from_pretrained( self.config.image_encoder_path ).to(dtype=self.weight_dtype, device="cuda") sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) scheduler = DDIMScheduler(**sched_kwargs) # load pretrained weights denoising_unet.load_state_dict( torch.load(self.config.denoising_unet_path, map_location="cpu"), strict=False, ) reference_unet.load_state_dict( torch.load(self.config.reference_unet_path, map_location="cpu"), ) pose_guider.load_state_dict( torch.load(self.config.pose_guider_path, map_location="cpu"), ) pipe = Pose2VideoPipeline( vae=vae, image_encoder=image_enc, reference_unet=reference_unet, denoising_unet=denoising_unet, pose_guider=pose_guider, scheduler=scheduler, ) pipe = pipe.to("cuda", dtype=self.weight_dtype) self.pipeline = pipe pose_images = read_frames(pose_video_path) src_fps = get_fps(pose_video_path) pose_list = [] pose_tensor_list = [] pose_transform = transforms.Compose( [transforms.Resize((height, width)), transforms.ToTensor()] ) for pose_image_pil in pose_images[:length]: pose_list.append(pose_image_pil) pose_tensor_list.append(pose_transform(pose_image_pil)) video = self.pipeline( ref_image, pose_list, width=width, height=height, video_length=length, num_inference_steps=num_inference_steps, guidance_scale=cfg, generator=generator, ).videos ref_image_tensor = pose_transform(ref_image) # (c, h, w) ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w) ref_image_tensor = repeat( ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=length ) pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w) pose_tensor = pose_tensor.transpose(0, 1) pose_tensor = pose_tensor.unsqueeze(0) video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0) save_dir = f"./output/gradio" if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) date_str = datetime.now().strftime("%Y%m%d") time_str = datetime.now().strftime("%H%M") out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4") save_videos_grid( video, out_path, n_rows=3, fps=src_fps, ) torch.cuda.empty_cache() return out_path controller = AnimateController() def ui(): with gr.Blocks() as demo: gr.HTML( """
This is a quick preview demo of Moore-AnimateAnyone. We appreciate the assistance provided by the HuggingFace team in setting up this demo.
To reduce waiting time, we limit the size (width, height and length) and inference steps when generating videos.
If you like this project, please consider giving a star on our GitHub repo 🤗.