import os import sys import logging import gradio as gr import shutil from demucs_handler import DemucsProcessor, check_dependencies, configure_model from whisper_handler import WhisperTranscriber import tempfile import torch import torchaudio import soundfile as sf import librosa import numpy as np # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) def validate_environment(): try: import torch import torchaudio import demucs logging.info(f"PyTorch version: {torch.__version__}") logging.info(f"Torchaudio version: {torchaudio.__version__}") logging.info(f"CUDA available: {torch.cuda.is_available()}") except ImportError as e: logging.error(f"Environment validation failed: {e}") sys.exit(1) def create_interface(): validate_environment() processor = DemucsProcessor() transcriber = WhisperTranscriber() def process_audio(audio_file, whisper_model="base", progress=gr.Progress()): if audio_file is None: return None, "Please upload an audio file." temp_files = [] try: progress(0, desc="Starting processing") logging.info(f"Processing file: {audio_file}") with tempfile.TemporaryDirectory() as temp_dir: temp_audio_path = os.path.join(temp_dir, "input.wav") vocals_output_path = os.path.join(temp_dir, "vocals.wav") # Convert to WAV first audio, sr = librosa.load(audio_file, sr=44100) # Fixed: use samplerate instead of sr sf.write(temp_audio_path, audio, samplerate=sr) temp_files.append(temp_audio_path) progress(0.1, desc="Separating vocals") try: vocals_path = processor.separate_vocals(temp_audio_path) # Copy vocals to output path shutil.copy2(vocals_path, vocals_output_path) temp_files.append(vocals_output_path) except RuntimeError as e: logging.error(f"Vocal separation failed: {str(e)}") return None, f"Vocal separation failed: {str(e)}" # Load the processed vocals for playback vocals_audio, vocals_sr = librosa.load(vocals_output_path, sr=None) progress(0.75, desc="Transcribing") lyrics = transcriber.transcribe(vocals_output_path) progress(1.0, desc="Processing complete") # Return the audio data tuple and lyrics return (vocals_sr, vocals_audio), lyrics except Exception as e: error_message = f"Processing error: {str(e)}" logging.error(error_message) return None, error_message finally: # Cleanup temporary files for file in temp_files: if file and os.path.exists(file): try: os.remove(file) except: pass interface = gr.Interface( fn=process_audio, inputs=[ gr.Audio(label="Upload Audio File", type="filepath"), gr.Dropdown( choices=["tiny", "base", "small", "medium", "large-v2"], value="medium", label="Whisper Model Size" ) ], outputs=[ gr.Audio(label="Isolated Vocals", type="numpy"), gr.Textbox(label="Transcribed Lyrics", lines=10, max_lines=20) ], title="Audio Lyrics Extractor", description="Upload an audio file to extract vocals and transcribe lyrics", analytics_enabled=False ) return interface if __name__ == "__main__": if not check_dependencies(): print("Please install missing dependencies") exit(1) interface = create_interface() interface.launch()