# ------------------------------------------------------------------------ # Copyright (c) 2022 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Source: https://github.com/megvii-research/NAFNet import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import math class LayerNormFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, weight, bias, eps): ctx.eps = eps N, C, H, W = x.size() mu = x.mean(1, keepdim=True) var = (x - mu).pow(2).mean(1, keepdim=True) y = (x - mu) / (var + eps).sqrt() ctx.save_for_backward(y, var, weight) y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) return y @staticmethod def backward(ctx, grad_output): eps = ctx.eps N, C, H, W = grad_output.size() y, var, weight = ctx.saved_variables g = grad_output * weight.view(1, C, 1, 1) mean_g = g.mean(dim=1, keepdim=True) mean_gy = (g * y).mean(dim=1, keepdim=True) gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( dim=0), None class LayerNorm2d(nn.Module): def __init__(self, channels, eps=1e-6): super(LayerNorm2d, self).__init__() self.register_parameter('weight', nn.Parameter(torch.ones(channels))) self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) self.eps = eps def forward(self, x): return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) class AvgPool2d(nn.Module): def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False, train_size=None): super().__init__() self.kernel_size = kernel_size self.base_size = base_size self.auto_pad = auto_pad # only used for fast implementation self.fast_imp = fast_imp self.rs = [5, 4, 3, 2, 1] self.max_r1 = self.rs[0] self.max_r2 = self.rs[0] self.train_size = train_size def extra_repr(self) -> str: return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format( self.kernel_size, self.base_size, self.kernel_size, self.fast_imp ) def forward(self, x): if self.kernel_size is None and self.base_size: train_size = self.train_size if isinstance(self.base_size, int): self.base_size = (self.base_size, self.base_size) self.kernel_size = list(self.base_size) self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2] self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1] # only used for fast implementation self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2]) self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1]) if self.kernel_size[0] >= x.size(-2) and self.kernel_size[1] >= x.size(-1): return F.adaptive_avg_pool2d(x, 1) if self.fast_imp: # Non-equivalent implementation but faster h, w = x.shape[2:] if self.kernel_size[0] >= h and self.kernel_size[1] >= w: out = F.adaptive_avg_pool2d(x, 1) else: r1 = [r for r in self.rs if h % r == 0][0] r2 = [r for r in self.rs if w % r == 0][0] # reduction_constraint r1 = min(self.max_r1, r1) r2 = min(self.max_r2, r2) s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2) n, c, h, w = s.shape k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2) out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2) out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2)) else: n, c, h, w = x.shape s = x.cumsum(dim=-1).cumsum_(dim=-2) s = torch.nn.functional.pad(s, (1, 0, 1, 0)) # pad 0 for convenience k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1]) s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:] out = s4 + s1 - s2 - s3 out = out / (k1 * k2) if self.auto_pad: n, c, h, w = x.shape _h, _w = out.shape[2:] # print(x.shape, self.kernel_size) pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2) out = torch.nn.functional.pad(out, pad2d, mode='replicate') return out def replace_layers(model, base_size, train_size, fast_imp, **kwargs): for n, m in model.named_children(): if len(list(m.children())) > 0: ## compound module, go inside it replace_layers(m, base_size, train_size, fast_imp, **kwargs) if isinstance(m, nn.AdaptiveAvgPool2d): pool = AvgPool2d(base_size=base_size, fast_imp=fast_imp, train_size=train_size) assert m.output_size == 1 setattr(model, n, pool) ''' ref. @article{chu2021tlsc, title={Revisiting Global Statistics Aggregation for Improving Image Restoration}, author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin}, journal={arXiv preprint arXiv:2112.04491}, year={2021} } ''' class Local_Base(): def convert(self, *args, train_size, **kwargs): replace_layers(self, *args, train_size=train_size, **kwargs) imgs = torch.rand(train_size) with torch.no_grad(): self.forward(imgs)