import gradio as gr import numpy as np import torch from diffusers import UniPCMultistepScheduler from PIL import Image from diffusion_webui.controlnet_inpaint.canny_inpaint import controlnet_canny from diffusion_webui.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import ( StableDiffusionControlNetInpaintPipeline, ) stable_inpaint_model_list = [ "runwayml/stable-diffusion-inpainting", "stabilityai/stable-diffusion-2-inpainting", ] controlnet_model_list = [ "lllyasviel/sd-controlnet-canny", ] prompt_list = [ "a red panda sitting on a bench", ] negative_prompt_list = [ "bad, ugly", ] def load_img(image_path: str): image = Image.open(image_path) image = np.array(image) image = Image.fromarray(image) return image def stable_diffusion_inpiant_controlnet_canny( dict_image: str, stable_model_path: str, controlnet_model_path: str, prompt: str, negative_prompt: str, controlnet_conditioning_scale: str, guidance_scale: int, num_inference_steps: int, ): normal_image = dict_image["image"].convert("RGB").resize((512, 512)) mask_image = dict_image["mask"].convert("RGB").resize((512, 512)) controlnet, control_image = controlnet_canny( dict_image=dict_image, controlnet_model_path=controlnet_model_path, ) pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( pretrained_model_name_or_path=stable_model_path, controlnet=controlnet, torch_dtype=torch.float16, ) pipe.to("cuda") pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() generator = torch.manual_seed(0) output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, image=normal_image, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, guidance_scale=guidance_scale, mask_image=mask_image, ).images return output[0] def stable_diffusion_inpiant_controlnet_canny_app(): with gr.Blocks(): with gr.Row(): with gr.Column(): inpaint_image_file = gr.Image( source="upload", tool="sketch", elem_id="image_upload", type="pil", label="Upload", ) inpaint_model_id = gr.Dropdown( choices=stable_inpaint_model_list, value=stable_inpaint_model_list[0], label="Inpaint Model Id", ) inpaint_controlnet_model_id = gr.Dropdown( choices=controlnet_model_list, value=controlnet_model_list[0], label="ControlNet Model Id", ) inpaint_prompt = gr.Textbox( lines=1, value=prompt_list[0], label="Prompt" ) inpaint_negative_prompt = gr.Textbox( lines=1, value=negative_prompt_list[0], label="Negative Prompt", ) with gr.Accordion("Advanced Options", open=False): controlnet_conditioning_scale = gr.Slider( minimum=0.1, maximum=1, step=0.1, value=0.5, label="ControlNet Conditioning Scale", ) inpaint_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", ) inpaint_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", ) inpaint_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Image(label="Outputs") inpaint_predict.click( fn=stable_diffusion_inpiant_controlnet_canny, inputs=[ inpaint_image_file, inpaint_model_id, inpaint_controlnet_model_id, inpaint_prompt, inpaint_negative_prompt, controlnet_conditioning_scale, inpaint_guidance_scale, inpaint_num_inference_step, ], outputs=output_image, )